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(4.4) Remark. The group TV 7t± (AXN) is a central extension of TV

(see the appendix) and, as AXN is acyclic, satisfies H1 (TV) H2 (TV) 0.

Therefore TV is the universal central extension of TV (see [K2]), namely one

has the exact sequence 0 -> H2 (TV) -> TV -> TV - 1. Therefore, if / : X
-> X' is a map such that 71! (/) sends the perfect normal subgroup TV of
7r± (X) isomorphically onto a normal subgroup TV' of 71! (X'), then the

induced map Af : AXN A(X^ induces an isomorphism on the fundamental

groups.

§ 5. fc-SIMPLE ACYCLIC MAPS

In this section we study acyclic maps having simplicity properties. The
first proposition generalizes some results of Dror [Dl, Lemma 3.4].

(5.1) Proposition. Let f : X -> Y be a map of path connected

spaces with nl (/) an isomorphism, and let TV be a perfect normal
subgroup of n1 (X) n. If f induces an isomorphism H* (X, Z [77:/TV])

^ H% (Y, Z [71/TV]) and an isomorphism nt (X) ^4 7rf (T) for i ^ k — 1,

then

(1) 7xk (/) : 7ik (X) -> nk (Y) is an epimorphism when TV acts trivially
on nk Y), and

(2) nk(f) : nk (X) nk(Y) is an isomorphism when TV acts trivially
on nk (X) and nk(Y).

Proof Let F XN be the homotopy fibre of the covering map f : XN

-» Tjy. By hypothesis it follows easily that / induces an isomorphism on
integral homology and on 7rf (X) -> 7^ (7) for i ^ k - 1. From the Serre

spectral sequence we have H0 YN, TTfc_! (F)) TT0 (N,Hk^1 (F)) 0.
Since Hk_1 (F) nk_1 (F) is a quotient of nk(Y) on which the perfect
group TV acts trivially, it follows that nk^1 (F) 0, which proves (1).

Under the hypothesis of (2) we have nt(F) 0 for i < k and

H0 YN9 Hk (F)) H0 (TV, 7ik (F)) 0. Since TV acts trivially on nk (X)
the induced morphism nk (F) -> %k (X) must be trivial, which proves the
proposition.

The following lemma, proved in [D2, Lemma 2.6], follows easily from
the homology exact sequence.

L'Enseignement mathém., t. XXV, fasc. 1-2. 5



— 66 —

Hi(G,M")-* H0 (G, M') ->H0(G,M) -» H0 (G, M") -> 0

(5.2) Lemma. L<?z 0 -> M' -* M-*M" - 0 be a short exact sequence
of Z [G]-modules whereG is a perfect group. Then M' and M" are trivial
G-modules if and only if M is a trivial G-module.

(5.3) Definition. A space X is k-n1 (X) acts trivially
on 7ik (X). A map f :X-* Yis k-simple provided ker (/) c: n1 (X)
acts trivially on nk X).(5.4) Proposition. Letf: X—» Ybe a map with A
where tz1 (A) is perfect. Then f is k-simple if and only ifis k-simple.

Proof. In the homotopy exact sequence of any fibration

nk+i(Y) ^nk(A) ->T ->7r

see the appendix, 7t1(A)actstrivially on im (nk+l (Y) -> nk (A)) M'.
If / is k-simple, then im (rt1 (A)) ker (n1 (/)) acts trivially on nk (X).
Hence (A)actstrivially on M'<=nk (A) and on the quotient nk
By (5.2), it acts trivially on nk (A).

Conversely, ker (7^ (/)) acts trivially on ker (nk (/)) c nk (X) and
trivially on nk(Y)=>im(nk (/)). By (5.2), ker (n, (/)) acts trivially on
nk (X). This proves the proposition.

(5.5) Notations. For a path connected space X and a perfect normal
subgroup N of nk X),we consider the following conditions:

(Pk). The group N acts trivially on nt (X) for i ^ k.

(Hk). The group N acts trivially on (X) for k.

(5.6) Proposition. For all natural numbers k we have that Pk implies
Hk and Hk implies Pk_1. In particular, Hx and Pœ are equivalent.

Proof. Consider the following commutative diagram where the rows
and columns are fibrations.

T >- AXn

X XN BN

F X+Nv BN+
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By (5.4) condition Pk implies that acts trivially on nt

for / ^ k. Since AXN and A (BN) are both acyclic and

n1 (A (BN)) is an isomorphism (by (4.4)), we deduce using (5.1) that nt (AXN)
-» 7ii (A (BN)) is an isomorphism for ^ Thus ni (T) 0 for ^ - 1

and nk (T) is a trivial module nl (A (BN)) since it is a quotient of
nk+i (A (BN)). On the other hand, we have H0 (nl A(BN)), nk 0

since nk (T) Hk (T) and thus (AXN) -> (BN)) is an isomorphism.

Therefore, nk (T) 0 and Ht (X) -> Ht (F) is an isomorphism for
i f k. Hence Pk implies Hk since Nactstrivially on * (F).

Next, assume Hk holds. Then Ht (X) — H( (F) is an isomorphism for
' kby the comparision theorem for spectral sequences of fibrations
with trivial actions. Since îi! (F) is abelian, ny (F) 0 and ni (T) 0 for

i è k -1. Hence 7 z1(AXN) acts trivially on ni (AXN) for ^ k 1.

Using (5.4), we deduce Pk-k and the proposition.

(5.7) Theorem. Let f :X-> Ybe an acyclic map between CW-spaces
which is k-simple forall k^2 with N ker 7^ (/). Then the following
is a fiber sequence

X[B^i(-X")] n

where a' is induced by a : X-*Bnt(X)(3.1) n1(a) is the
identity.

Proof. As in the previous proposition, we have a diagram of fibrations

T —> AXn

X * XN

F Y

\\
Y [^(X)]*
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We prove X F is a homotopy equivalence with the same argument used

in (5.6) to show Pk implies Hk. Since F is also the fibre of X^ [.071! (F))] ^
we have proved the theorem.

(5.8) Remark. Using (5.1), we see that for an acyclic map / : X -> Y
which is ^-simple for all k ^ 2, the homotopy groups 7i* F) can be

computed in terms of 71*{X) and 7r* (i^ (F)^) ^ 7i* (BN)+ for z ^ 2. Some

computations of 7i* (i?A+) for a certain perfect group N can be found for
instance in [H, Chapter 7]. c

In this section we study acyclic maps f: X Y into a fixed space Y.

Two such map / : X -> Y and /' : F' -> Y are called equivalent provided
there is a homotopy equivalence h : X X' with f ~f'h. Let AC (Y)
denote the class of equivalence classes of acyclic/ : X -> Y over Y where X
and Y are CJF-spaces.

(6.1) Definition. An extension data over a space Y is a triple (#, z, $)
where

(a) <P is an extension 1 N -» G n1 (F) -> 1 with N perfect,

(b) i : BG -» zs an acyclic map with ker (n1 (z)) N (whose equi¬

valence class is well defined by {3.5)), anJ

(c) 4> : Y -> iKz# zs a 2-connected map.

Two triples of extension data (#, z, 0) and (#', z", <£') are called
equivalent provided there exists an isomorphism g : G -> G' makfng the following

diagrams commutative (up to homotopy for the second one).

§ 6. Acyclic maps into a given space

BG
Bg

BG'

VG
g

G'

\\ // B(G')+N

ni (F) \
F
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