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AN EQUIVARIANT SETTING OF THE MORSE THEORY 1

by Raoul Bott 2

This being a "Feiertag" in the true sense of the word, and mine being
the last lecture—as well as being so far out of line of the topic of this

symposium—you will permit me a few words of a general nature; an

explanation so to speak, why I have been invited to these festivities.

I expect we all find periods in our life when it seems that Providence is

at the helm and all that is asked of us is to give it free reign. To me the

year 1949-50 is such a period and it is as clearly etched in my mind now as

it was ten, -twenty, -thirty! years ago. For then, quite providentially at the

last possible moment I was asked to the Institute for Advanced Study at
Princeton a brash brand new Ph.D from Carnegie Tech, and I had the whole
miraculous world of pure mathematics burst upon me. At that time Princeton

was inhabited by giants. One saw Einstein and Gödell stroll arm in
arm—I recall a lecture by Dirac with Einstein, Pauli, von Neumann,
Hermann Weyl and Oppenheimer in the audience—and it was my great
good fortune that on this exciting trip providence had also provided me
with a wonderful guide, a very dear friend, and at the same time a quite
exacting tutor. That young man is our birthday-child of today. I of course
have a store of anecdotes from that time, and maybe I can divulge some of
them later tonight. Here let me mention only one. I bombarded Ernst with
so many stupid questions that in desperation he finally imposed a fine of
25 cents on any conjecture he could disprove in less than five minutes.
This should give you some idea of the inflation of the past thirty years and
also help to explain Ernst's vast fortune at this time.

Of course I had many other teachers there: Reidemeister, Steenrod—
Ernst and I attended his course on Fiber-bundles—and also friends, many
of whom I am delighted to see here today: de Rham, Erdös, Beno Eckmann,

1 Presented at the Symposium über Logik und Aîgorithmik in honour of Ernst Specker,
Zürich, February 1980.

2 This work was supported in part through funds provided by the National Science
Foundation under grant 33-966-7566-2.
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Chandrasekharan. How wonderful to see you all—and how nice it would
have been if already in those days we had known that this occasion awaited

us just thirty years hence.

But it is time to show you that Ernst did teach me some topology there

in Princeton. I apologize to have nothing to tell you which would be more

apropos to this conference. (There is some irony in that, for in 1949

networks, graphs and such like were my interests. It nearly seems that in our
interaction in Princeton, Ernst and I interchanged our momentum.) But
before I launch into a subject which I fell in love with, also in that year
of 1949, let me close with one serious word. Thank you Ernst for having
been a friend and teacher to me, and I expect to most of us here, in the truest
sense: for you aways teach as a friend, and what you teach is always more
than the subject.

Now to work. I would like to show you a formula, which seems to me
the appropriate generalization of the Morse theory to the equivariant
situation. Recall then first of all that the "Morse theory" attaches to every
"generic" smooth function f on a compact manifold, M, a polynomial

(/) Z where the summation is over the critical points of/ and
p

if p is such a critical point, i.e.

then Xp denotes the number of negative eigenvalues of the matrix

d2f
Hpf -j-nrjdx dxJ

p

The germ "generic" is here meant in the sense that all these second order
matrices be nonsingular. This immediately implies that the critical points

of/are finite in number and so JCt (/) is indeed a well defined polynomial.
Now the fundamental first result of the Morse theory is that this polynomial
has as a lower bound the Poincaré Polynomial of M:

Pt(M) ltk dim Hk(M)

where Hk (M) denotes the k-th cohomology group of M (relative to some

field).
I will not try to define Pt (M) in greater detail here—suffice it to say

that it is our oldest and most trustworthy topological invariant of a space,

and that its coefficients are called the Betti-numbers of M.
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Precisely, then the Morse theorem can be stated as follows: In the

situation envisaged there exists a polynomial Q(t) with nonnegative

coefficients such that

(*) -Pt(M) (1+0 0(0-

Note that this certainly implies that Mt (/) is > Pt (M) coefficient by

coefficient. In fact it is a quite considerable refinement of that inequality.

For instance, it immediately implies the following Lacunary principle of
Morse:

If the product of any two consecutive coefficients of Jt t (/) vanish, then

Jit{f) Pt(M)

and M is ' free of torsion".

For example the 2-coordinate is a function on the 2-sphere: x2 + y2
+ z2 1, with a minimum at z 0 and a maximum at z 1. Hence

Jtt(z) — 1 + t2

and so Pt (S2) 1 + t2 also.

In short, as a zeroeth approximation to Pt (M), one may use Jit (/)
for an economicalf i.e. one having as few critical points as M will allow.
Put differently, we may think of the Morse theory as quantitatively predicting
the minimal critical behavior forced by the topology of the situation.

The problem I want to address here now, is, how other constraints on
a function force critical points, and in particular I would like to measure
the effect which an assumed symmetry of/ has on its critical behavior.

Two examples will serve to set the stage:

Example 1. Let/ be a smooth real valued function on the line R, which
is invariant under the group of integers, Z, acting on R by translation :

/(x + l) =/(x).
What then is the minimal critical behavior of/?

Answer. Clearly such an/ descends to a function

fz : R/Z - R

on the circle obtained by identifying the points of R under the group-action,
and as such it must satisfy the Morse inequalities of a function on S1.
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Example 2. Let the circle S1 act on S2 e R3 by rotation about the
2-axis in 3-space. What is the appropriate critical behavior forced on a

function /invariant under this action?

If we attempt to treat this case as before by descending to the function

/si : S2jSl - R

induced byf something goes wrong, because S 2/S1 is clearly just an interval
— 1 < z < 1, and hence its Poincaré polynomial is just 1. Thus the Morse
inequalities would only force one critical point which is patently absurd.

Now the main difference between these two examples is that in the first
one the action of the group was—what we call "free" and in the second it
was not. By the way, an action of a group G on a space X is "free" if
(roughly) the G-orbit of each point x is homeomorphic to G, and these
orbits behave uniformly under the variation of x. This is clearly the case in
the first example, and fails near the North and South poles of S2 in the
second.

In our context it is now easily seen that indeed, if G acts freely on M,
and fis G invariant then the Morse inequalities of the induced function fG
on M/G express the critical behavior that is forced on /by the symmetry G.

Note that in this case M/G will also be a manifold in its own right!
However when the action is not free, M/G will in general not be a manifold

at all and its Poincaré series seems to have little to do with the additional
critical behavior forced on / by the G-symmetry.

Now in homotopy theory this phenomenon is well-known and the

homotopy theorists long ago devised a method of dealing with it. The point
is that they defined a homotopy quotient for any action of a group G on a

space X—notated XG—which, when the action is free reduces to X/G in
the homotopy category, and in other cases produces a new space out of
the action. This space XG reflects the singularities of the action in a—at
times—surprising manner. The plan of the homotopy theorists is as follows :

First note that if G acts freely on a space W, then the diagonal action
of G on X x W will be free whatever the action of G on J was. Secondly,
recall that contractible spaces do not affect homotopy in any way. In line
with these two principles the homotopy quotient XG is defined as follows :

We first select a fixed space W on which G acts satisfying two conditions :

a) G acts freely on W

b) W is contractible.
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Then define XG by :

XG X x W/G

Note by the way that according to this procedure the homotopy quotient
of the "worst possible of actions" i.e. the action of G on a point p is given by

pG p x W/G W/G

This space—which we call the classifying space of G, and denote by BG is

absolutely fundamental in modern homotopy theory. The reason is, that it
turns out that a space W satisfying a, b si essentially uniquely determined

by G (in homotopy theory) so that finally BG is a space which depends on G

alone and somehow is an amalgam of its own topology and its abstract

group structure.
The following is a table of BG's for some garden variety of groups.

Table of Classifying Spaces

G W W/G PtiWIG)
Z R R/Z S1 1 + t

Z" R" R"/Z" S1 x... X S1 (1 +0"
z2 S(H) Rf® 1

17(1) S1 S(H) CFœ (1 -t2)-1
U(2) 2-frames in H G2(H) (1 —r2)-1 (l —r4)-1

U(n) n frames in H Gn(H) (l -t2)-1 ...(l

Here Z denotes the integers, Zn the direct product of Z with itself n
times, Z2 the group { ± 1}, and U (n) of course the unitary group. The
first two W's of course come to mind immediately, on the other hand the

I rest should strike you as way out. In all of these think of H as a complex
infinite-dimensional Hilbert space, and of S (H) as its unit sphere. The
space of «-frames on H is then the space of «-tuples {xl9...,xn} of elements

[ in S (H) which are mutually orthogonal. U («) clearly acts on these

{*<}-{
and the quotient gives precisely the Grassmannian Gn (H) of all «-dimensional

subspaces of H.For n —1, this is simply the projective space.
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All these examples then rely on the beautiful fact that the unit sphere in
an infinite dimensional Hilbert Space is contractible

Note also that most of these spaces BG have Poincaré Series in accordance

with the fact that they are infinite-dimensional manifolds.
We are now finally ready for the equivariant version of the Morse

inequalities. Assume then that M and G are compact, that G acts smoothly
on M and that/ is a (/-invariant smooth function on M. The critical points
of/ then naturally fall into orbits { O} of the group action and we now also

assume that / is nondegenerate in its category—that is—that the Hessian

of/ is nondegenerate in the directions normal to the critical orbits. It then
follows that/has only a finite number of critical orbits {Oi}"=v Finally
let {Pi}"=1 be a set of points one in each orbit Ou and let Ht be the stability
group of p{. Thus

Oi G/Hi. i — 1, n

With all this understood, define the equivariant Morse Series of/by:

I tÄ(-p) Pt (BHp)

where p ranges over the {pt}.
Also define the equivariant Poincaré series of M by:

Pf (M) I tk dim Hk (MG)

(This is then simply the Poincaré series of the homotopy quotient.)
The theorem—due to Atiyah and myself—is now : For simplicity assume

that all the stability groups are connected and both G and M are compact.
Then the equivariant Morse Series of f and Poincaré Series of M satisfy
the Morse inequalities :

(**) (/) ~~ P?(M) (1+02(0
where Q (t) q0 + q1 t + with qt > 0.

The proof is really not very difficult, indeed / descends to a function

fG on Mg in the obvious manner and then one simply has to apply the

theory of nondegenerate "critical manifolds" to see that

Q.E-D.

By the way when one allows for disconnected stability groups, the

formula persists with appropriate local coefficient systems. As concrete

instance of (**), consider the function

f(x, y, z) z
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on our two sphere S2 of Example 2. It is clearly invariant under S1;
Further its critical points are just the North and South poles.—Both are
fixed under the action of S1, thus H S1 and hence

1

W) -2 +
t2 1 - t2 '

The right-hand side of (**) is also quite computable and one finds that
1 + t2

Pf (S2) so that the height function z, is again a perfect Morse

function in the equivariant sense.

Although I am pleased with (**) per se—as I am with all nice formulas—
let me just say one word on how M. Atiyah and I chanced upon it, and how
we put it to use.

Of late the physicists have been much concerned with the Yang-Mills
functional, and its classical extrema. These are then solutions of certain
nonlinear differential equations, and it occurred to us that the Morse theory
should enable us to get at some information about the topology of the

space of these solutions. This of course leads to an infinite dimensional
analogue of the situation described—but it turns out that in the end it is

the formula (**) which leads to the correct result.
For instance applied to the solution space of the Yang-Mills problem—

let's call it Min,—for a U (3) bundle over a Riemann Surface of genus g,
(**) gives us the following formula for the Poincaré polynomial of Min:

'**) Pt (Min)
{t5 + l)2g(t3 + l)2g - (t2 + I)2 t*g~2(l +t)2g(l +t3)2g + (l+t2+t*)t6g-2(l+t)4g

(it2 -1) o4 -1)2 (t6 - l)

I display it proudly to show you that although we are often accused

(especially by Ernst) of dealing in chimerial concepts, they do at times

solidify into very concrete information.—More concrete than any I have

seen here—for that matter. This formula is also noteworthy in that it was
not new I It was derived by a completely different method—using counting
procedures in finite fields going back to C. L. Siegel, and the "Weil-
Conjectures". The original impetus for that derivation was done by
Harder, [2] who did the U (2) case. The formula (***) occurs in a paper by
Ramanan and Usha.
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In closing let me bring this formula into the context of our seminar by
offering it as a provisional proof of the consistancy of mathematics; to tide
us over until you, dear Ernst, or some of your friends devise a more
convincing one.

Harvard, March 1980

I append the following bibliography in case someone is interested in
following some aspect of the subject. A paper, scheduled for the London
Math. Journal, is under preparation by Atiyah and myself.
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