
2. Circuits and Alternating Turing Machines

Objekttyp: Chapter

Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 27 (1981)

Heft 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

PDF erstellt am: 09.08.2024

Nutzungsbedingungen
Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in
Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss
Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung
übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot
zugänglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

102 S. A. COOK

ware size is the number of active finite state machines, and for vector
machines it is the sum of the lengths of the vectors. For SIMDAG's and
P-RAM's it corresponds roughly to the number of processors, although it
should take into account the total memory used. For circuits, the circuit
size is an upper bound on hardware size, but the traditional restriction that
circuits are acyclic disallows elements to be reused during a computation
and hence may give an unrealistically large value for size. Hence "aggregates"

are introduced in section 4. These can be thought of either as circuits
with cycles, or as finite conglomerates.

Section 2 discusses two fundamental fixed structure parallel models;
namely, uniform circuit families and alternating Turing machines. These

turn out to be nearly equivalent. Section 3 gives examples which are log
depth complete for deterministic log space, and hence may distinguish
between two similar classes: deterministic log space and uniform log
circuit depth. Section 4 discusses two fixed structure models useful for
considering hardware size as well as parallel time; namely, conglomerates
and aggregates. Section 5 introduces hardware modification machines, and
section 6 surveys other modifiable parallel models, such as vector machines

and parallel RAM's. Section 7 discusses characterizations and
interrelationships between two complexity classes defined by simultaneous

resource bounds; namely, NC and SC Finally, section 8 lists some open
problems.

2. Circuits and Alternating Turing Machines

Perhaps the simplest model for measuring the parallel time to compute a

function is the combinational circuit (or simply a circuit). (See [S3] and

[P2] for general discussions of circuits.)

Notation. Bn {/| {0, 1}"-* {0, 1}} the set of all Boolean functions

of rank n.

Definition. A circuit oc with n inputs is a finite directed acyclic graph
such that each node has a label from {xu u B0 u u B2. A node

labelled xt must have indegree zero, and is called an input node. A node v

with label g e Bt must have indegree f, and one edge into v is associated

with each argument of g. Certain nodes are designated output nodes. When
the variables xt are assigned values from {0, 1} every node v assumes a

unique value in {0, 1}, so that v computes some function fv of xl9..., xn.

We say the circuit a computes f if/ fv for some output node v.

SYNCHRONOUS PARALLEL COMPUTATION 103

We shall assume that every node v has a path from v to some output.
That is, we assume there are no syntactically superfluous nodes.

Let c (a) (the complexity of a) be the number of gates (i.e. nodes other

than inputs) in a, and let d (a) (depth of a) be the length of the longest

path in a. If /eB„, then c (/) min {c (a) | a computes /} and

d (/) min {d (a) | a computes /}.
If As {0, 1}*, then A" An{0, 1}". We can regard A" as a member

of B„ by the convention A" (xu x„) 1 iff (x1... x„) eA". A family {«„]
of circuits computes A iff ocn computes An for all n9 and each an has a unique

output node.

Notation. Let S, T : N+ -> R. Then

SIZE (T) {A I 3 {an} : {aB} computes A and c (an) O (T («))}

DEPTH (S) (A I 3 {an} : {an} computes A and d (an) O (S («))}

We shall always assume T (n) > n and S (ri) > log n.

These complexity classes are strange in that they include nonrecursive

sets A. In fact, by Lupanov's result (see [S3]) SIZE (2n/n) 2{0'1}*, and

by disjunctive normal form DEPTH (n) Nevertheless they are

mathematically interesting, and have intuitive significance especially for
lower bound results. In particular, a proof that A ^ DEPTH (S) means
that no parallel computer with fixed circuitry could compute A in time
O (S). This is because the parallel computation could be unwound to form
a circuit with constant delay at each gate. Our assumption that circuits
have bounded fan-in (in fact fan-in two) is justified by engineering experience
that any general design for a gate with n inputs has a delay at least
proportional to log n. On the other hand, Hoover [HI] gives results that show
that an assumption of fan-ow* two would not materially alter either the
depth or the size complexity of a set A.

Although the circuit depth to compute A is a reasonable lower bound
on the parallel time required, it is not a reasonable upper bound in general
(unless we want parallel machines to compute nonrecursive sets). Borodin
[Bl] proposed making it reasonable by requiring that the family {a„}
computing A be uniform in some sense. The trouble is there is no clearly
correct choice for the definition of uniform. (See Ruzzo [Rl] for a discussion
of various possibilities.) Here we shall adopt the following definition, which
has gained some acceptance (see [CI], [Rl], and [PI]):

Definition. A family {a„} of circuits is uniform provided some
deterministic Turing machine can compute the transformation 1" - än in space

104 S. A. COOK

O (log c (a„)). (Here ân is a binary string coding the circuit an in some
reasonable fashion.)

We can now define the uniform complexity classes

USIZE (T) {A I 3 uniform {aw} : computes A and c (art)

O (T (n))}

UDEPTH (S) {A I 3 uniform {a„} : {an} computes A and d (a„)
O (S 0n))}

Notice that the size c (an) is not mentioned in the definition of UDEPTH
so it can be taken to be as large as possible consistent with d (ocn). In fact,

every circuit of depth d with a unique output can be expanded into an
equivalent tree circuit of size 2d — 1. Also, our assumption of no superfluous
nodes implies that no unique-output circuit of depth d can have more than
2d — 1 nodes. This leads to the following

Proposition 2.1. The class UDEPTH (S) remains unchanged if the

definition ofuniform family {anj is changed to require that the transformation
1" -> än be computable in deterministic space O (d (a,,)) instead of
O (log (c(«„))).

The alternative definition of uniform is in fact the one given by Borodin
[Bl].

Borodin expresses the general thesis in [Bl] that circuit size corresponds
to Turing machine time and circuit depth corresponds to Turing machine

space. (If we identify uniform circuit depth with parallel time, then the
second assertion is an instance of the parallel computation thesis stated in
section 1.) One precise statement of Borodin's thesis is the following:

Theorem 2.1. If [logT] is fully space constructable, then

USIZE (T°(1)) DTIME (T°(1)).

If S is fully space constructable, then

UDEPTH (S°(1)) DSPACE (S°(1)).

(See [HU] for the definitions of constructable, DTIME and DSPACE.
We have altered the definitions of the latter so they contain only subsets

of {0, 1}*.)
The first equation is easy in this crude form, and in fact can be made

considerably more precise (see [PI]).

SYNCHRONOUS PARALLEL COMPUTATION 105

The second equation is a consequence of the following result of Borodin

[Bl], which states that the inclusions (1.1) hold for uniform circuit depth.

Theorem 2.2. If S is fully space constructable, then

UDEPTH (S) <= DSPACE (S), and

NSPACE s UDEPTH (S2).

Corollary (Savitch's Theorem). If S is fully space constructable,

then NSPACE (S) <= DSPACE (S2).

Let us sketch the proof of theorem 2.2. The circuit value problem (see

[HU]) is the set of all binary strings encoding systems <x1?..., xn; a) where

each xt e {0,1} and a is a circuit whose unique output is 1 when its n inputs
take on the values xl9 xn.

Lemma 2.1. There is a deterministic Turing machine M which recognizes
the circuit value problem, and on an input encoding <xl5..., xn ; a), M uses

space O (d (a)).

The idea is to perform a depth first search of a from the output
node taking left descendants first. M stores the number of the node v

currently examined, together with one symbol for each node on the path
followed from the root to v. This symbol is either a marker L, if the search
is proceeding on through the left input of the node; or the value of the left
input if this value has been determined and the search is proceeding on to
the right.

The first inclusion of Theorem 2.2 follows from Lemma 2.1 and
Proposition 2.1.

To prove the second inclusion, recall that the graph reachability problem
(GRP) (see [HU]) is the set of all binary strings encoding the adjacency
matrix of a digraph G on nodes (l, 2, N} such that G has a path from
node 1 to node N.

Lemma 2.2. GRP 6 UDEPTH (log2 n).

The proof involves constructing a circuit which computes the transitive
closure of a Boolean matrix by repeated squaring. The circuit has O (log n)
stages, and each stage has depth O (log n) and computes the Boolean square
of the matrix resulting from the previous stage. The circuit can be
constructed by a deterministic Turing machine in space O (log n).

Given a nondeterministic S space bounded Turing machine M and the
input length n, a circuit ccn is constructed which does the following on an

106 S. A. COOK

input string w of length n. an first computes the adjacency matrix A of the

graph whose nodes are the possible configurations of M with an input of
length n, and whose edges represent possible steps in a computation with
input w. We can assume M has an initial configuration labelled 1 and a

unique accepting configuration labelled N. an now solves the graph
reachability problem for A according to Lemma 2.2. The solution to the

problem is positive iff M accepts w. Using Lemma 2.2 it is not hard to see

that ocn has depth O (S2) and can be constructed in deterministic space
O (S2) (in fact, space O (S)).

Theorem 2.1 represents one way to make precise Borodin's thesis that
size corresponds to time and depth to space. Alternatively, instead of
making the circuit family {a„} uniform one can make Turing machines
nonuniform (see [SI]). We borrow from Pippenger's terminology [PI].
Suppose g : {0, 1}* -> {0, 1}*. We say that a (deterministic or non-
deterministic) multitape Turing machine accepts A modulo g provided
that M accepts A under the condition that in addition to the normal input
x e {0, 1}* on a read only input tape M is also provided with g (x) on a

separate read only tape called the reference tape. The space used by M is

the work tape space plus Tlog | g (x) 11, where | w | is the length of w. (The
term flog | g (x) 11 was not counted in [PI], but it should be, since it
represents the amount of information stored by the position of the head on the
reference tape.) The function g is length determined if g (x) depends only
on I x |, and not otherwise on x. A nonuniform machine is a machine M
together with a length determined function g. It accepts A provided it
accepts A modulo g. We add (NONUNIFORM) after a complexity class

to indicate the machines are allowed to be nonuniform.
There is an alternative and more elegant definition of nonuniform space.

We say that A is in DSPACE (S) (NONUNIFORM) provided there is a

family {F„} of finite automata, each with a two-way read only input tape,
such that Fn recognizes A", and log | Fn | O (S («)), where | F„ | is the

number of states of Fw. It is not hard to verify that this definition is

equivalent to the one in the previous paragraph (recall our convention
that S (n) > log n).

The above definition does not work for time. However, Les Valiant
pointed out that we could change the definition of nonuniform Turing
machine to be a family {Mn} of Turing machines instead of a single Turing
machine with a reference tape. The time complexity T (n) of such a family
would be the maximum of | Mw | and the worst case running time of M„
on inputs of length n. The space complexity S (/?) would be log | Mrt | plus

SYNCHRONOUS PARALLEL COMPUTATION 107

the worst case space used by Mn on inputs of length n. This gives the same

definition of nonuniform space as before, but the nonuniform time is only

the same up to application of a polynomial.
In any case, theorems 2.1 and 2.2 have the following analogs for

nonuniform machines:

Theorem 2.3.

SIZE (T°(1)) DTIME (T°(1)) (NONUNIFORM), and

DEPTH (S°(1)) DSPACE (S°(1)) (NONUNIFORM).

Theorem 2.4.

DEPTH (S) Ç DSPACE (S) (NONUNIFORM), and

NSPACE (S) (NONUNIFORM) <= DEPTH (S2).

To prove these results, the nonuniform machines simulate the circuits

by letting g (x) provide a description of the circuit for inputs of length \x\.
Conversely, a circuit family {a„} can simulate a nonuniform machine by
building into an the value of g (x) for | x | n.

Note that the following nonuniform version of Savitch's theorem is a

consequence of Theorem 2.4:

Corollary.

NSPACE (S) (NONUNIFORM) c DSPACE (S2) (NONUNIFORM).

In other words, a 2s-state 2NFA can be simulated by a 2°(s2)-state

2DFA for inputs of length n < 2s.

A second interesting model of parallel computation, which falls in the

fixed structure category, is the alternating Turing machine (ATM) ([CS],

[Kl], [CKS]). An ATM is a generalization of a nondeterministic multitape
Turing machine. A nondeterministic machine has existential states, for
which there are several possible next states, and at least one of the alternatives
must lead eventually to an accepting state. In addition to existential states,

an ATM also has universal states, for which all of the possible next states

must lead to an accepting state. We define the accepting state to be a
universal state with no successors. Every state is either universal or existential.

Thus an accepting computation of an ATM M with input w is a finite
tree whose nodes are labelled with configurations of M, such that i) every
universal node (i.e. node whose configuration has a universal state) must
have all possible next configurations as children, ii) every existential node

108 S. A. COOK

must have at least one possible next configuration as a child, and iii) the

root is the initial configuration. In order for M to operate in sublinear time
we assume it has "random access" to the bits of w instead of a read only
input tape. That is, M has a special index tape, and when M writes an
index i on the index tape and assumes one of a distinguished set of index

states, the z-th symbol of the input w is placed on the index tape. We say
M accepts w in time s and space / if there is an accepting computation of M
with input w whose longest path from root to leaf is s or less, and such that
no configuration in the computation has tapes of length exceeding /. The

complexity classes for time and space for ATM's are designated ATIME (S)
and ASPACE (L), respectively, and we always assume S («), L (n) > log n.

As different as ATM's may seem from uniform circuit families, there is a

remarkably close correspondence between alternating time and circuit
depth, and between alternating space and circuit size. Unfortunately, our
definition of uniform for circuits is too weak to express the correspondence
precisely. Ruzzo gives a number of alternative definitions, of which the

strongest is the following: {an| is UE uniform iff the connection language

Lec can be recognized by a deterministic Turing machine in time

0 (log c (oe„)). Here LEC consists of those quadruples (n, g9p, x) such that
if g' is the gate reached by following the path p e {h9 R}* (where

1 p I < log c (a„)) in circuit an back from gate g (L, R refer to left and right
input, respectively) then g' has label x if x e B2, and g' x otherwise.

(Assume n9 g and x are expressed in binary notation.)
If we use the notation, for example, UeDEPTH (S) to indicate this

notion of uniformity, then we have

ATIME (S) UeDEPTH (S), and

ASPACE (L) UeSIZE (20(L)),

assuming S (n) can be computed in deterministic time S (n)9 and L (n) can
be computed in deterministic time L (n) given n in binary notation. In fact,
Ruzzo [Rl] proves the stronger result that the equivalences hold
simultaneously. Let us use the notation ATIME-SPACE (S, L) for the class of
sets accepted simultaneously in time S and space L on an ATM, (note that
this may be a proper subset of the intersection of ATIME (S) and

ASPACE (L)), and analogous notation for other simultaneous classes.

Then

Theorem 2.5. ATIME-SPACE (S, L) UeDEPTH-SIZE (S, 20(L)),

provided S and L are computable in deterministic time O (S).

SYNCHRONOUS PARALLEL COMPUTATION 109

Ruzzo shows the above result still holds when UE is replaced by U,

provided S > L2.

From their definition, ATM's appear to model a restricted form of
parallel computation, because the "processors" in the model are restricted

to be Turing machines, and they must be organized in the form of an

and-or-tree. This makes Theorem 2.5 all the more interesting. On the other

hand, ATM's are more pleasing in one way than circuit families, because

there is no question of how to define uniform. Each ATM is automatically
uniform. In fact, ATM's may be the best candidate proposed so far for
defining parallel time, at least in the fixed structure category. But this
remains to be seen. The one clear drawback of ATM's is that they do not
seem to have any resource that corresponds to hardware size (see section 4).

3. Log Depth vs Log Space

As far as we know, the second inclusions in Theorems 2.2 and 2.4

cannot be improved, even when NSPACE is replaced by DSPACE. (Of
course an improvement for NSPACE would improve Savitch's theorem.)
Taking S (n) log n as the most basic case, it is interesting to look for
examples of sets in DSPACE (log n) which do not appear to be in
DEPTH (log n). Addition of n «-digit binary numbers, and multiplication
of two «-digit binary numbers both can be done in O (log «) circuit depth
(see [S3]), as can sorting « «-digit binary numbers (see [MP]). On the other
hand, the "cycle free problem" is in DSPACE (log «) but does not appear
to be in DEPTH (log «).

Definition. The cycle free problem (CFP) is the set of all binary codes
for symmetric Boolean N x N adjacency matrices A of undirected cycle-
free graphs.

One can define functions /: {0,1}* -> {0,1}* computable in depth S

(or uniform depth S) using circuits with several outputs. We say A± is
log depth reducible to A2 (respectively uniformly log depth reducible) iff
there is some function / computable in depth O (log n) (respectively
uniform depth O (log «)) such that w e A± iff/(w) e A2, for all w. We say A
is log depth complete for the class Sf iff A e and every A7 e Sf is log
depth reducible to A. The uniform case is defined similarly. The main
ideas in the proof of the following result appear in Hong [H2].

	2. Circuits and Alternating Turing Machines

