
7. Simultaneous Resource Bounds

Objekttyp: Chapter

Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 27 (1981)

Heft 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

PDF erstellt am: 12.07.2024

Nutzungsbedingungen
Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in
Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss
Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung
übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot
zugänglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch



118 S. A. COOK

infinite random access memory. The program is executed by the CPU,
which can broadcast instructions to the active PPU's. Each instruction
broadcast is executed by the first k PPU/s, where k is stored in some
location of global memory. Each PPUf executes the same instruction, but
the memory locations accessed can be indexed by the subscript /, and so

can be different for different PPU/s. The simulations proved for SIM-
DAG's are a little stronger than 1.2; namely, SIMDAGTIME (S)

ç DSPACE (S2), and NSPACE (S) ç SIMDAGTIME (S). The reason
that nondeterministic space S instead of just deterministic space S can be

simulated in time O (S) is apparently because of a powerful SIMDAG
instruction which allows any number of PPU's to store into memory at
once. If two or more try to store into the same location, the lowest numbered

processor succeeds. This gives the effect of a huge fan-in being executed

in one step.
The P-RAM of Fortune and Wyllie [FW] is similar to the SIMDAG,

except different parallel processors can be executing different parts of their

program at once, so it is "multiple instruction stream". Also, there is no
instruction comparable to the SIMDAG's instruction which allows a

potentially unbounded number of processors to try to store in a given
location at once. Wyllie shows in [Wl] that the multiple instructiop stream

gives only a constant factor time advantage over SIMDAG's. On the other
hand, the unbounded fan-in for SIMDAG's seems to be a real advantage,
since the time space simulation results for P-RAM's are those of 1.2;
weaker than for SIMDAG's.

The PRAM's of [SS] have no global memory, but a given processor
can initiate offspring processors. The time space simulation results in [SS]

are weaker than either 1.1 or 1.2.

In conclusion, all the parallel models in this section have powerful
instructions which cannot be considered primitive.

7. Simultaneous Resource Bounds

In section 2 we indicated that sequential time is roughly equivalent to
uniform circuit size, and sequential space is roughly equivalent to uniform
circuit depth. A natural question to ask is whether simultaneous time and

space bounds are roughly equivalent to simultaneous uniform size and

depth bounds. To be more specific, the well known class P can be characterized

as either DTIME (w°(1)) or as USIZE (/70(1)), and "polylog space"



SYNCHRONOUS PARALLEL COMPUTATION 119

is both DSPACE ((log n)°(1)) and UDEPTH ((log zz)°(1)). If we use the

notation DTIME-SPACE (T, S) to refer to the class of sets accepted by

some deterministic Turing machine which runs both in time T and space S,

then the class referred to as PLOPS (polynomial time and polylog space)

in [CI] (and now called SC by agreement among several authors), can be

written DTIME-SPACE (zz°(1), (log zz)°(1)). Note that SC is presumably a

proper subset of P n DSPACE ((log n)°(1)). For example, the graph

reachability problem (GRP) (see section 2) is in the intersection class but

not known to be in SC.

The corresponding circuit-defined class is USIZE-DEPTH (zz°(1),

(log 7?)°(1)), which is called NC in [CI] and [Rl] after Pippenger, who

first characterized it (see theorem 7.1). Again NC is presumably a proper
subset of the intersection class, although it is remarkably difficult to think
of a natural example of something in the intersection class but not in NC.

(The universal set UPL defined below may be an artificial example.)

Getting back to the original question, we now ask whether SC NC?
The answer is apparently no, because there are natural problems in NC
which do not appear to be in SC. One example is GRP (or any other

complete problem for NSPACE (log n)). Other examples are integer
division and integer powering (see section 3). (Technically these should
be made into recognition problems by specifying an index i as part of the

input and asking whether the z-th output digit is 1.) And another class of
examples are those context free languages which we don't know how to put
into SC (see theorem 7.5 below).

Conversely, it is not so easy to find natural candidates for the difference
set SC-NC. In fact, it is difficult to find sets in SC which are not clearly in
DSPACE (log n) (and therefore in NC). Any universal deterministic
context free language (DCFL) provides an example because of the result
in [CI], but again Ruzzo proved that all CFL's are in NC.

One can still concoct artificial candidates for SC-NC. For example, a
universal set UPL for SC2 (SC2 DTIME-SPACE (zz°(1), log2 n)) can
be constructed as follows : Design a machine M which shuts itself off if it
attempts to use more than log2 n space or n2 time. Let M on an input
coding a pair (x, y) simulate machine number x on input y; and accept iff
neither its pace nor time bound is exceeded and machine x accepts y. Then
UPL is log space complete for SC2 and does not appear to be in NC.

We conclude that time and space together do not seem to be even
roughly equivalent to uniform size and depth together. However, Pippenger
[PI] proves that time and reversal together do correspond to size and depth



120 S. A. COOK

together. Here the reversal of a computation of a multitape Turing machine
is the number of times any of its heads changes direction (a hesitation is

not a reversal). Pippenger proves

Theorem 7.1. NC DTIME-REVERSAL (rc°(1), (log n)°(1)).

This is one characterization of NC, and Ruzzo [Rl] points out several

others. In fact, NC appears to be a very stable and interesting class.

Intuitively, it is comprised of all problems which can be solved very rapidly
on a parallel computer of feasible size. To make this statement more
evident, we point out NC can also be characterized in terms of aggregates
(see section 4).

Theorem 7.2. NC UHARDWARE-AGTIME (n°{1\ (log/2)°(1)).

This follows immediately from the definition of NC and the discussion

in section 4 about converting circuits to aggregates and vice versa.

I would like to mention three of Ruzzo's [Rl] characterizations of NC.
First, Ruzzo gives several alternative definitions of uniform circuit family,
including our definition in section 2, and proves that NC remains the same

for all of them. In particular, NC remains unchanged when the strong
definition of UE uniform is chosen. From this and theorem 2.5 Ruzzo
concludes the second characterization :

Theorem 7.3. NC ATIME-SPACE ((log n)°(1\ log n).

The third characterization is

Theorem 7.4. NC - AuxPDA TIME-SPACE (>§" °(1), log n).

Here AuxPDA stands for auxiliary pushdown automaton. The theorem
holds whether it is deterministic or nondeterministic.

We now sketch the proof of another interesting Ruzzo result:

Theorem 7.5. Every context free language is in NC.

Part of the interest of the proof is that it was apparently discovered using

ATM's (via theorem 7.3), which is an indication that ATM's are a useful tool
for discovering and expressing parallel algorithms. The proof of 7.5 follows
the classical [LSH] proof that every CFL is in DSPACE (log2 n), but needs

a new idea. As in [LSH], we assume the grammar is in Chomsky form, and



SYNCHRONOUS PARALLEL COMPUTATION 121

try to verify the existence of a parse tree for the input string whose nodes

have the form (cr, i,j) (which is valid if symbol a generates the segment of
the input between the z-th and y'-th symbols inclusive). The ATM algorithm
proceeds by guessing (via an existential state) a node (a, i,j) which generates
between one-third and two-thirds of the input string and then verifies (via
a universal state) that both (1) (cr, /, j) is a valid node, and (2) the original
root is valid given (cr, i,j) is valid. These two subproblems are solved by
executing the algorithm recursively. Since the depth of the recursion is

O (log 77), the alternating time is O (log2 77), but unfortunately a general
recursive call to the algorithm must remember up to log n hypothesis nodes

I (cr1, iuj1)3 (ak, ik!jk), which require a total of Q (log2 n) space to
i.| express, so theorem 7.3 does not apply. The new idea is to keep the number
;; of hypothesis nodes down to two, by guessing at a common ancestor to

two of them whenever three hypotheses would otherwise be formed. This
|) keeps the space down to O (log 77), so 7.3 applies.
jj In addition to comparing time and reversal to size and depth, Pippenger
J also shows time and space together are roughly equivalent to size and width.

To define the last resource, let us say a circuit is synchronous if its gates can
11 be divided into levels such that all inputs to the gates at level / are either
I input nodes xt or are from gates at level / — 1. Then the width of a syn-
l chronous circuit is the maximum of the number of gates at any level,
y Pippenger also gives a suitable definition of width for nonsynchronous
;j circuits and proves several relations among width, size, space and time, of

which the following is a corollary:

j Theorem 7.6. SC USIZE-WIDTH (n°(1), (log ;7)0(1)).

§ Dvmond [Dl] extends Pippenger's results to relate space and reversals
1 to uniform width and depth. Two easy observations along these lines are
j that theorem 7.6 still holds if USIZE is replaced by UDEPTH, and SC

I remains unchanged if time is replaced by reversal in its definition. In
addition, it is not hard to see that SC can be characterized in terms of
aggregates as follows:

j Theorem 7.7. SC UEtARDWARE-AGTIME ((log tz)0^, 77°(-1^.

This result shows an interesting duality with theorem 7.2. The question
of whether NC SC becomes the question of whether hardware size can
be traded for computation time in uniform aggregates, without exponential

1 blow up in the other resource.


	7. Simultaneous Resource Bounds

