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ON THE GENUS OF GENERALIZED FLAG MANIFOLDS

by Henry H. Glover and Guido Mislin

Introduction

Let A be a nilpotent space of finite type. We denote by G (A) the genus of A,
i.e. the set of all homotopy types Y (nilpotent, of finite type) with p-localizations

Yp ~ Ap for all primes p, (cf. [HMR]). The set G (A) has been studied extensively
in case of A an H-space. In particular it is known that for the special unitary

group SU (n) one has

\G(SU{n))\> FI (ö (m!)/2)
1 <m<n

where (j) is the Euler function [Z, p. 152]. We are interested in this note in finding
non-trivial examples A with G (A) {[A]} and we call such spaces generically
rigid. A large family of such generically rigid spaces is provided by certain
generalized flag manifolds. Let

G U (n1 + n2+ +nk)

and

H U (nj X U (;n2) x x U (:nk),

embedded in G in the obvious way. Then

M M (nl9 n2,..., nk) G/H

is a generalized flag manifold (generalizing the standard complex flag manifold
U (n)/Tn which corresponds to M (1, 1,..., 1)). We will show essentially that
whenever the homotopy rigidity result for linear actions holds for M (cf. [LI],
[L2], [EL]), then M is also generically rigid. These two seemingly unrelated
rigidity results are tied up by certain results on E (A) and E (A0), the groups of
homotopy classes of self equivalences of A and A0, A0 the rationalization of A.

To make our result more precise, we need some further notation. For

M M (nu nk) G/H
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as above, we write N (H) for the normalizer of H in G. The finite group N (H)/H
acts on M in an obvious way and it is well known that through that action,
N (H)/H is faithfully represented in H* (M ; Q). We can therefore consider
N (H)/H as a subgroup of E (M) or E (M0). By Theorem 1.1 of [GH2] the

canonical map

E(M0)^ Aut^tf*(M;Q)
is a group isomorphism. In particular, the grading automorphisms

g (q) : H* (M;Q)-> tf* (M;Q)

defined by g (q) x qlx for x e H21 (M ; Q) and ^gQ*, lift to unique self

equivalences of M0 (which we denote also by g (q)% and thus

Gr(M0){g(q)\qeQ*}<= E(M0)
is a central subgroup isomorphic to Q*.

In all cases of generalized flag manifolds for which E (M0) has been

computed, the subgroup generated by Gr (M0) and N {H)/H,

(Gr(M0),N(H)/H) cz E(M0)

is all of E (M0). The following conjecture is thus plausible.

Conjecture C. Let M M (nl9 n2,nk) be a generalized flag manifold.
Then

E (M0) (Gr(M0),N(H)/H>.

A similar conjecture appears in [LI, Conjecture C] but the relationship
between the two conjectures is not entirely clear.

The Conjecture C has been verified in the following cases :

1) nx n2 nk 1 (compare the proof of Thm. 1 in [EL])
2) nx n2 nk^1 1, nk ^ k — 1 (compare the proof ofTheorem 9 in

[LI])
3) 2 and k 2 (follows from [O])
4) > Wl and k 2 ([GH1], [Br])
5) 1, n2 > 1, n3 ^ 2n2 — 1 and k 3 ([GH2])

The Conjecture C holds therefore for instance for all complex Grassmann

manifolds Gp (Cp +
<?) M (p, q) with p =£ q (since M (p, q) ~ M (q, p)), and for

the classical flag manifolds U (n)/Tn.

Our main theorem may be stated as follows.
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Theorem. LetM M(n1;nk)be a generalized flag manifold for
which the Conjecture C holds. Then

G (M) {[M]}.

In particular the Grassmann manifolds Gp(Cp+q) for p and the flag
manifolds U (n)/Tn are all generically rigid.

§1. Genus and self maps

Let P denote a fixed set of primes. Two P-sequences

SUS2:P^E(XO)

are called equivalent, if there exist maps h (0) g E (Jf0) and

h (p)e im (E(Xp)c E(X0))

such that for all p e P one has

h(0)SAp) s2(p)h(p).

Definition 1.1. We denote by P-Seq (E (X0)) the set of equivalence classes of
P-sequences in E (X0).

If P is a finite set of primes and X a nilpotent space of finite type, then there is

a canonical map

Q :G(X)-+ P-Seq (E (X0j).

It is defined as follows. Let Y e G (X) and P {pu pn}. Then the localization

YP is a pull-back of maps Xp. X0, i.e. YP ~ hoinvlim {Xp. X0}. The

maps Xt induce equivalences e E (X0) and we put

9(7)

If Yp may also be represented by hoinvlim {Xp.^> X0}, then there exist maps
h (0) g E (X0) and /T(pf) g E {Xpf i e {1,..., n} rendering the diagrams
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