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theorem for noncompact semisimple Lie groups due to Casselman (cf. Wallach
[47, Cor. 7.5]). Casselman's theorem improves Harish-Chandra's [22,

Theorem 4] subquotient theorem.

5.6.3. The generalized Abel transform / -> F8f can be defined for general K-

type 5. It was introduced by Harish-Chandra [24, p. 595] in the spherical case,

Takahashi [40, §2] in the case G SO0{n, 1) and Warner [49, 6.2.2] in the

general case. The injectivity of this transform holds generally, cf. Warner [49].
The image of /*5(G) under this transform is known in the spherical case (cf.

Gangolli [16]) and if G has real rank Land 8 is one-dimensional (cf. Wallach
[46]), but seems to be unknown in the general case (cf. Warner [49, p. 36]).

5.6.4. In [39] Takahashi also reduces the proof of Theorem 5.4 to

Proposition 5.5. However, he proves Prop. 5.5 by considering eigenfunctions of
the Casimir operator, since he did not know, then, how to invert the transform /
— Fnf. In [42] he independently obtained a proof of Prop. 5.5 similar to ours.

Earlier, in [40, §4.1] he used a similar method in the spherical case of G

SO0(n, 1). Naimark [34, Ch. 3, §9] proved the subquotient theorem for
SL(2, C) by methods somewhat related to ours.

5.6.5. Part of Lemma 5.8 is contained in Whitney [50]. See Schwarz [37]
for a theorem on Cx-functions which are invariant under a more general Weyl

group.

5.6.6. Theorem 5.10 more generally holds with Gegenbauer polynomials of
integer of half integer order as kernels, cf. Deans [6], [7], Koornwinder [27,
§5.9]. Deans' proof uses the inversion formula for the Radon transform. The
author's proof uses Weyl fractional integral transforms and generalized
fractional integral transforms studied by Sprinkhuizen [38]. Matsushita [30,
§2.3] considers the transformation / - F} for general real n in the context of the
universal covering group of SL(2, R) and he derives the inversion formula with a

proof due to T. Shintani, which uses Mellin transforms.

6. Unitarizability of irreducible subrepresentations
OF THE principal series

6.1. A CRITERIUM FOR UNITARIZABILITY

Remember that a representation of an lese, group G on a Hilbert space is

strongly continuous if and only if it is weakly continuous (cf. Warner [48,
Prop. 4.2.2.1]). Thus, if i is a (strongly continuous) Hilbert representation of G
then t defined by
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(6.1) x(g) : T (g!),e G,

is again a (strongly continuous) Hilbert representation of G on J^(x). The

representation x is called the conjugate contragredient to x. The representation x

is unitary iff x x.

Theorem 6.1. Let G be an lese, group with compact abelian subgroup K.
Let x be a K-multiplicity free representation of G. Let {cj)s} be a K-basisfor
Jf(x). Let c8(ô e J(x)) be positive real numbers. Then the following statements

are equivalent to each other:

(a) x is Naimark equivalent to some unitary representation.
A

(b) x ~ x with Acj)5 c5(|>ô(8 e Jf(xj).

(c) *y,5 (g!)— t5, y(0), Y> 5 e e
c

If moreover, x is irreducible then (a), (b) and (c) are equivalent to :

(d) For some 8 e we have

tY, 5id ~ t8, y(g), g e G, for all y e
ccy

If (b) holds then x(g)(geG) is unitary with respect to a new inner product
< V > on <2)(A) defined by

(6.2) <(j)Y, <t>5> :

0 if y # 8,

c5 if y 8.

Proof. First observe that x(/e)cjj6 8(k)<\>i,(kEK), so {(|>6} is a K-basis with
respect to t as well. We have

(6.3) t7>5(Ö[) « x^fg')B B*
(a) => (b) : Let x ~ a with a unitary. Then a a and a ~ x. Let {\|/5} be a

iC-basis for (a). Let h5\|/ô(8 g Ji{x)). Then, by Theorem 4.5 :

K~ _
by

^y, Ô ^y, 5

^5

y
ly, S i

so (b) holds.
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(b) => (a) : Assume (b). Then A is self-adjoint and positive definite. Define a

new inner product <*, •> on @(A) by <v, w> : (Av,w). Then, for

v, w g (/{A), g g G, we have :

<x(g)v, x(g)w> (Ax(g)v, x(g)w) (x(g l)Ax(g)v,w)

(Ax{g~ l)x(g)v, w) (Av, w) <v, w>

i.e. < i(g)v, x{g)w > < v, w >. Thus x is a unitary representation on @(A) with

respect to the new inner product. (Weak continuity of x is easily proved.) Let a be

the extension of this representation to a unitary representation in the Hilbert
B

space completion of Q){A) with respect to < v>. Then x ~ a, where B is

the closure of the identity operator on Q){A) (cf. Lemma 4.4). Note that we have

also proved the last part of the theorem.

The equivalence of (c) or (d) with (b) follows from Theorem 4.5.

6.2. The case SU( 1, 1)

It follows from (2.30) that

(6.4) C^,X,n,m — (— l)m W

rn, n •

Combination of (6.3), (2.29) and (6.4) yields

(6.5) fc^ x -x

In §6.1 we showed that a necessary condition for unitarizability of an

irreducible subquotient representation x of x is the equivalence of x and x. In
view of (6.5) and Theorem 4.7 this is only possible if X ±X, that is, if X is real or
imaginary. If X is imaginary then x % y so x is already unitary. Let us

now examine the case that X is real and nonzero. Then n^, -y If1 is an

irreducible subquotient representation of n^x then x ~ x with (cf. (4.10))

(6.6) u m
4>m, 4>m e (x),

where c^ k> m
is given by (4.9). Now a sufficient condition for the unitarizability of

x is that the coefficients x, m are all positive or all negative for e (x).

Referring to the classification in Theorem 3.4 we will examine these
coefficients. (Because of equivalence, it is not necessary to treat the cases where
X < 0.)
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(a) nox{k>0,X^Z+i).
(_ ^ + l)|m| ryCo,x,m 77-rZC'o, i,mhas fixed sign iff 0 < X < j.

fb) idx(A.>0, UZ).

(-^44 Km~ 7771
> m + i e {0, 1, 2, ...}

ICm + yNo fixed sign.

(c) 717
x and ti^ x(X, + £,eZ + j, X > 0).

(I'M ~M))!„ t ^ :
Cç, x,m= 7777,r m\Zk + lj|m| _{X+_)

Fixed sign.

(<1) TC°x(X+^6Z+iX>0).

c^- f^_i+ m)!(X + i_m)! ' + i-a-i
No fixed sign except if X, f, £ 0.

Combining these results with Theorems 3.4, 4.7 and 5.4 and Prop. 4.2 we
reobtain Bargmann's [2] classification of all irreducible unitary
representations of SU{ 1, 1):

Theorem 6.2. Any irreducible unitary representation of SU( 1,1) is

unitarily equivalent to one and only one of the following representations :

1) iv(£ 0, j, v>0), n0 0,7rt 7ü~
n (unitary principal series).

%* ' T, o T, o

2) 7T0, x(0<^<i) on C Span{..., c()_ l9 (t>0, <t>n •••}

with respect to the inner product

<(j)m <j>„ > : {nX+fH 8m,„ fcomplementary series).
(A+ 2)|m|

3) 41^%»^ 0 or i X £, + i Ç
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on
Cl Span{<K + i, (h+ 3/2, •••}

and

Cl Span{..., 4>-x-3/2,

respectively, with respect to the inner product

(discrete series),

4) ttq, x (identity representation)

6.3. Notes

6.3.1. Following Bargmann [2], most authors prove Theorem 6.2 by
infinitesimal methods. Vilenkin [43, Ch. VI] uses the method of the present

paper. Takahashi [39, §6] decides about unitarizability by considering whether

% x. n. n
is a positive definite function on G.

6.3.2. A method related to this section was used in Flensted-Jensen &
Koornwinder [15] in order to find all irreducible unitary spherical
representations of non-compact semisimple Lie groups G of rank one. They
examined the nonnegativity of the coefficients in the addition formula for the

spherical functions on G. See also [27, §6.4].

6.3.3. A generalization of Theorem 6.1 can be formulated for not necessarily
abelian K and, partly, for K-finite x, cf. [27, Theorems 6.4, 6.5].
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