ON BOOLEAN ALGEBRAS WITH DISTINGUISHED SUBALGEBRAS

Autor(en): Koppelberg, Sabine
Objekttyp: Article
Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 28 (1982)
Heft 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

PDF erstellt am:
13.07.2024

Persistenter Link: https://doi.org/10.5169/seals-52239

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

ON BOOLEAN ALGEBRAS WITH DISTINGUISHED SUBALGEBRAS*

by Sabine Koppelberg

In this paper, let $\mathscr{L}=\{+, \cdot,-, 0,1, U\}$ be the language of Boolean algebras ($B A$'s) with an additional unary predicate \mathscr{U}. Rubin has proved in [6] that the theory in \mathscr{L} of Boolean algebras with a distinguished subalgebra (given by the interpretation of U) is undecidable. The main result of this paper is the solution of a problem stated in [6]: let \mathbf{K} be the class of \mathscr{L}-structures $\mathscr{M}=(B,+, \cdot,-, 0,1, A)$ where (B, \ldots) is a complete $B A$ $(c B A), A$ is a complete subalgebra and the inclusion map from A to B is complete; we show that $\mathrm{Th}(\mathbf{K})$, the set of first- order \mathscr{L}-sentences which are true in every structure in \mathbf{K}, is decidable. We shall abbreviate $B A$'s (B, \ldots) by their underlying set B.

The first idea to do this is to describe explicitly all completions of $T h(\mathbf{K})$. One could then try to prove the decidability of $T h(\mathbf{K})$ by Theorem 2 in [5]. A well-known example for a decidability proof in this style is given by the theory of $B A$'s; the main task, to list all completions of this theory, was achieved by Tarski, see Theorem 5.5.10 in [1]. Before describing the complete first-order theory of a structure $\mathscr{M}=(B, A)$ in \mathbf{K}, one has to get some idea how B "lies above A " and which details of the structure of an extension (B, A) of $B A$'s can be expressed in first-order logic. Now B can be represented by the set of global sections of a sheaf of $B A$'s over the Stone space X of A. Although the possibility of this representation is probably well-known to experts and although it is very easily established, it seems to give just the right intuition as to what are the relevant facts about the extension (B, A). We thus get an idea how to obtain a recursive set T of \mathscr{L}-sentences which looks rather natural and holds in every structure \mathscr{M} of \mathbf{K}.

It turns out that Comer's Feferman-Vaught-theorem on sheaves over Boolean spaces applies to the models of T. This establishes rather easily that a first-order sentence is in $T h(\mathbf{K})$ if and only if it is provable from T

[^0]and that $T h(\mathbf{K})$ is decidable. It is then possible to describe the completions of T (which, however, was not necessary in the decidability proof).

As another example for the usefulness of sheaf representations of $B A$ extensions (B, A), we consider the special case where B is finitely generated over A and we describe the action of a single automorphism of B leaving A pointwise fixed. This was motivated by Monk's paper [4] where the Galois group $\mathrm{Aut}_{A} B$ is studied in detail for a simple extension B of A and attempts are made towards finite extensions. The possibility of describing by a sheaf representation those extensions (S, R) of commutative rings for which the usual Galois correspondence can be established is, however, not new- see [8].

In section 1 of this paper, we give a sketch of the sheaf representation of a $B A$ extension (B, A). We prove that the sheaf is Hausdorff iff A is relatively complete in B, which means that for $b \in B$, there is a largest $a \in A$ such that $a \leqslant b$.

In section 2, we provide a method to construct all automorphisms of B over A if B is a finite extension of A (2.4). We illustrate this method by computing the Galois group of B over A if A is relatively complete in $B(2.6)$ and by proving in 2.7 that A is relatively complete in B iff there is a single automorphism of B over A moving every element of $B \backslash A$. This means that the finite extensions (B, A) where A is relatively complete in B are just the extensions called weakly Galois in [8].

Section 3 contains part of the machinery needed for the main result of the paper: if $(B, A) \in \mathbf{K}, \varphi\left(x_{1} \ldots x_{n}\right)$ is an \mathscr{L}-formula and $b_{1}, \ldots, b_{n} \in B$, we prove that $\left\|\varphi\left[b_{1} \ldots b_{n}\right]\right\|$, the set of points p in the Stone space X of A such that φ is satisfied by $b_{1}(p), \ldots, b_{n}(p)$ in the stalk B_{p} over p, is a clopen subset of X. This enables us to apply the Feferman-Vaught theorem in Comer's version to our sheaf. More precisely, we show that there is an effective procedure assigning a formula $s_{\varphi}\left(y x_{1} \ldots x_{n}\right)$ to $\varphi\left(x_{1} \ldots x_{n}\right)$ such that the element a of A corresponding to $\left\|\varphi\left[b_{1} \ldots b_{n}\right]\right\|$ is the only element of A satisfying $s_{\varphi}\left(a b_{1} \ldots b_{n}\right)$ in (B, A). We then define the theory T in \mathscr{L} and show that each \mathscr{M} in \mathbf{K} is a model of T.

Finally in section 4, we prove that the theorems of T are just the sentences in $\mathrm{Th}(\mathbf{K})$ and that $\mathrm{Th}(\mathbf{K})$ is decidable. We characterize elementary equivalence of T-models, give a list of all completions of T and prove that each of these completions has a model in \mathbf{K}.

I should like to thank E. Engeler and G. Gati for hints (originally due to P. Gabriel) on literature about sheaf theoretical methods in the Galois theory of rings.

1. The sheaf representation of Boolean algebra extensions

Let \mathscr{L} be any language for first-order predicate logic. Suppose X is a non-empty set and for every $p \in X$ we have an \mathscr{L}-structure $\mathscr{B}_{p}=\left(B_{p}, \ldots\right)$; put $S=\underset{p \in X}{\cup} B_{p}$. Suppose $\varphi\left(x_{1} \ldots x_{n}\right)$ is an \mathscr{L}-formula, $u \subseteq X$ and $f_{1}, \ldots, f_{n}: u \rightarrow S$ are such that $f_{i}(p) \in B_{p}$ for $1 \leqslant i \leqslant n$ and $p \in u$. Then let

$$
\left\|\varphi\left[f_{1} \ldots f_{n}\right]\right\|=\left\{p \in u\left|\mathscr{B}_{p}\right|=\varphi\left[f_{1}(p) \ldots f_{n}(p)\right]\right\} .
$$

We may think of $\left\|\varphi\left[f_{1} \ldots f_{n}\right]\right\| \subseteq X$ as being a (Boolean) truth value of $\varphi\left[f_{1} \ldots f_{n}\right]$ in the power set of X.

A sheaf of \mathscr{L}-structures is a sequence

$$
\mathscr{S}=(S, \pi, X, \mu)
$$

such that a) S and X are topological spaces and $\pi: S \rightarrow X$ is a continuous open local homeomorphism from S onto X, b) μ is a function assigning to each $p \in X$ an \mathscr{L}-structure $\mathscr{B}_{p}=\left(B_{p}, \ldots\right)$ such that the B_{p} are pairwise disjoint, $S=\underset{p \in X}{\cup} B_{p}$ and $\pi(s)=p$ iff $s \in B_{p}$, c) for every open subset u of X and continuous $f_{1}, \ldots, f_{n}: u \rightarrow S$ satisfying $f_{i}(p) \in B_{p}$ for $p \in u$ and every atomic \mathscr{L}-formula $\varphi\left(x_{1} \ldots x_{n}\right),\left\|\varphi\left[f_{1} \ldots f_{n}\right]\right\|$ is an open subset of u.

The \mathscr{L}-structure \mathscr{B}_{p} is called the stalk of \mathscr{S} over p. Let, if \mathscr{S} is a sheaf of \mathscr{L}-structures, $\Gamma(\mathscr{S})$ be the set of all continuous functions $f: X \rightarrow S$ satisfying $f(p) \in B_{p}$ for $p \in X$ (the set of "global sections" of \mathscr{S}). So $\Gamma(\mathscr{P})$ is, if non-empty, (the underlying set of) a substructure of the product structure $\prod_{p \in X} \mathscr{B}_{p}$, hence an \mathscr{L}-structure.

For the rest of the paper, let $\mathscr{L}=\{+, \cdot,-, 0,1, U\}$ where U is a unary predicate. We indicate how, for a given $B A$ extension $(B, A), B$ may be represented by $\Gamma(\mathscr{S})$ where \mathscr{S} is a sheaf of \mathscr{L}-structures over a Boolean space. We omit most of the proofs which are easy and entirely analoguous to well-known representation theorems for lattices over Boolean spaces. Let X be the Stone space of A, i.e. the set of all ultrafilters of A with the usual topology. For $p \in X$, let $\langle p\rangle$ be the filter of B generated by p. Let $\pi_{p}: B \rightarrow B /<p>=B_{p}$ be the canonical epimorphism. So B_{p} is a $B A$ with at least two elements. For $p, q \in X$ and $p \neq q, B_{p}$ and B_{q} are disjoint. Let $S=\cup B_{p}$ and $\pi: S \rightarrow X$ be defined as stated in b) above. Let, ${ }_{p \in X} B_{p}$, \mathscr{L} for $p \in X, \mu(p)$ be the \mathscr{L}-structure $\left(B_{p}, \ldots,\{0,1\}\right)$. For $u \subseteq X$ open and $b \in B$, let $M_{u b}=\left\{\pi_{p}(b) \mid p \in u\right\}$. The set of these $M_{u b}$ constitutes a base
for a topology of S, and this makes $\mathscr{S}=(S, \pi, X, \mu)$ a sheaf of \mathscr{L}-structures. Furthermore, for $b \in B, \sigma_{b}: X \rightarrow S$ defined by $\sigma_{b}(p)=\pi_{p}(b)$ is a global section of \mathscr{S} and

$$
\left.\begin{array}{c}
\sigma: B \rightarrow \Gamma(\mathscr{S}) \\
b \mapsto \sigma_{b}
\end{array}\right\}
$$

is an isomorphism from B onto $\Gamma(\mathscr{S})$. We shall now identify B with $\Gamma(\mathscr{S})$; so every $b \in B$ is a function from X to S. This identifies A with those $b \in B$ such that for every $p \in X b(p)=0$ or $b(p)=1$, i.e. with those $b \in B$ satisfying $\|U(b)\|=X$. Let C be the $B A$ of clopen subsets of X and $e(c)$ the characteristic function of c for $c \in C$. Thus e is an isomorphism from C onto $A \subseteq B$.

In the rest of this section, we show that the property of being a Hausdorff sheaf for \mathscr{S} is equivalent to a property of the extension (B, A) which reflects, in a way which is first-order expressible in \mathscr{L}, completeness of the embedding of A into B. Recall that, for a sheaf \mathscr{S} over a Boolean space X, S is a $T_{2}{ }^{-}$ space iff, for any $f, g \in \Gamma(\mathscr{P}),\|f=g\|$ is a clopen subset of $X ; \mathscr{S}$ is then said to be a Hausdorff sheaf. Call A relatively complete in B if, for every $b \in B$, there is a largest element $a \in A$ such that $a \leqslant b$, equivalently: for $b \in B$, there is a largest $a \in A$ such that $a \cdot b=0$ or: for $b \in B$, there is a smallest $a \in A$ such that $b \leqslant a$.
1.1. Proposition. \mathscr{S} is a Hausdorff sheaf iff A is relatively complete in B.

Proof. Suppose \mathscr{S} is Hausdorff and $b \in B$. Let $d \in B$ such that $d(p)=0$ for every $p \in X$, let $c=\|b=d\|$ and $a=e(c)$. Then a is the largest element of A satisfying $a \cdot b=0$.

Conversely, let A be relatively complete in B and suppose $f, g \in B$. Let a be the largest element of A such that $a \leqslant f \cdot g+-f \cdot-g$. Let $c \in C$ such that $a=e(c)$. Then $\|f=g\|=c$ is a clopen subset of X.
1.2. Remark. Let A be relatively complete in B. Then the inclusion map from A to B is a complete homomorphism.

Proof. Suppose M is a subset of A having a supremum a in A. We show that a is the supremum of M in B. Clearly, a is an upper bound for M in B. Suppose that b is another upper bound for M in B. Let $\alpha \in A$ be the largest element of A such that $\alpha \leqslant b$. For every $m \in M \subseteq A$, we have $m \leqslant b$, hence $m \leqslant \alpha$ and $a \leqslant \alpha \leqslant b$.

The following facts are trivial:
1.3. Remark. a) Let A and the inclusion map from A to B be complete. Then A is relatively complete in B.
b) Suppose A is relatively complete in B and B is complete. Then A is complete.

2. Relative automorphisms of finite extensions

We first give an internal description of a finite extension (B, A) where $B=A\left(u_{1} \ldots u_{n}\right)$ and $n \in \omega$. We shall always assume that u_{1}, \ldots, u_{n} are the atoms of the subalgebra of B generated by u_{1}, \ldots, u_{n}; i.e. that they are non-zero, pairwise disjoint and $u_{1}+\ldots+u_{n}=1$. Let $I_{r}=\left\{a \in A \mid a \cdot u_{r}\right.$ $=0\}$ for $1 \leqslant r \leqslant n$. Clearly, each I_{r} is a proper ideal of A and $I_{1} \cap \ldots \cap I_{n}$ $=\{0\}$. The family $\left(I_{r} \mid 1 \leqslant r \leqslant n\right)$ completely characterizes the extension (B, A):
2.1. Remark. Suppose $C=A\left(v_{1} \ldots v_{n}\right)$ is a finite extension of A where v_{1}, \ldots, v_{n} are pairwise disjoint and $1=v_{1}+\ldots+v_{n}$. Let $B=A\left(u_{1} \ldots u_{n}\right)$ be as above. There is an isomorphism g from B onto C satisfying $g(a)=a$ for $a \in A$ and $g\left(u_{r}\right)=v_{r}$ iff, for each $r,\left\{a \in A \mid a \cdot v_{r}\right.$ $=0\}=I_{r}$.

Proof. By Theorem 12.4 in [7].
2.2. Remark. A is relatively complete in $B=A\left(u_{1} \ldots u_{n}\right)$ iff, for each r, I_{r} is a principal ideal.

Proof. The only-if part follows by the definition of relative completeness. Now suppose $\alpha_{r} \in A$ generates I_{r}; let $b \in B$ and $I=\{a \in A \mid a \cdot b=0\}$. There are $a_{1}, \ldots, a_{n} \in A$ such that $b=a_{1} \cdot u_{1}+\ldots+a_{n} \cdot u_{n}$. It follows that I is the principal ideal generated by $\alpha=\left(-a_{1}+\alpha_{1}\right) \cdot \ldots \cdot\left(-a_{n}+\alpha_{n}\right)$.

Conversely, given any family ($I_{r} \mid 1 \leqslant r \leqslant n$) of proper ideals in A satisfying $I_{1} \cap \ldots \cap I_{n}=\{0\}$, there is an extension $A\left(u_{1} \ldots u_{n}\right)$ of A such that $I_{r}=\left\{a \in A \mid a \cdot u_{r}=0\right\}:$ let $D=A\left(x_{1} \ldots x_{n}\right)$ be the free product of A and a finite $B A$ with atoms x_{1}, \ldots, x_{n}. Let

$$
K=\left\{i_{1} \cdot x_{1}+\ldots+i_{n} \cdot x_{n} \mid i_{1} \in I_{1}, \ldots, i_{n} \in I_{n}\right\}
$$

K is an ideal of D; the canonical epimorphism π from D onto $B=D / K$ is one- one on A, and for $a \in A, \pi(a) \cdot u_{r}=0$ iff $a \in I_{r}$ where $u_{r}=\pi\left(x_{r}\right)$. Now identify A with the subalgebra $\pi(A)$ of B.

For the rest of this section we think, as in section 1 , of B as being the set of global sections of a sheaf $\mathscr{S}=(S, \pi, X, \mu)$ of Boolean algebras over a

Boolean space X; we use the abbreviations of section 1 . For $p \in X, B_{p}$ $=\{b(p) \mid b \in B\}$. Since $b(p) \in\{0,1\}$ for $b \in A$ and $B=A\left(u_{1} \ldots u_{n}\right)$, B_{p} is a finite $B A$ with atoms $\left\{u_{r}(p) \mid 1 \leqslant r \leqslant n\right\} \backslash\{0\}$.

Let $G=\mathrm{Aut}_{A} B$ be the group of those automorphisms of B leaving A pointwise fixed, i.e. G is the Galois group of B over A. Suppose $g \in G$ and $p \in X$. Since $g(a)=a$ for $a \in A, g$ induces an automorphism of B_{p} which, in turn, is induced by a permutation of the (at most n) atoms of B_{p}. This gives rise to the following definitions (S_{n} is the group of permutations of $\{1, \ldots, n\}$).

Let $p \in X$. For $1 \leqslant r, l \leqslant n$, say $u_{r} \sim u_{l}$ at p if there is a neighbourhood u of p such that, for $q \in u, u_{r}(q)=0$ iff $u_{l}(q)=0 . \pi \in S_{n}$ is said to be compatible with p if $u_{r} \sim u_{\pi(r)}$ at p for $1 \leqslant r \leqslant n . g \in G$ is said to be induced by π at p if $g\left(u_{r}\right)(p)=u_{\pi(r)}(p)$ for $1 \leqslant r \leqslant n$. Note that, if one of these definitions holds (for fixed $u_{r}, u_{l}, \pi \in S_{n}, g \in G$) for some $p \in X$, then it holds (for the same $u_{r}, u_{l}, \pi \in S_{n}, g \in G$) for every q in some neighbourhood of p. And $u_{r} \sim u_{l}$ at p means that there is a clopen subset c of X such that $p \in c$ and, for $a \in A$ satisfying $a \leqslant e(c), a \in I_{r}$ iff $a \in I_{l}$.
2.3. Lemma. Suppose $p \in X$ and $\pi \in S_{n}$. Then π is compatible with p iff there is some $g \in G$ which is induced by π at p.

Proof. Suppose π induces g at p and $1 \leqslant r \leqslant n$. Let u be a neighbourhood of p such that $g\left(u_{r}\right)(q)=u_{\pi(r)}(q)$ for $q \in u$. Thus, for $q \in u, u_{\pi(r)}(q)$ $=0$ iff $g\left(u_{r}\right)(q)=0$ iff $u_{r}(q)=0$ since g induces an automorphism of B_{q}.

Conversely, suppose π is compatible with p. Choose a clopen neighbourhood c of p such that $u_{r}(q)=0$ iff $u_{\pi(r)}(q)=0$ for $1 \leqslant r \leqslant n$ and $q \in u$. Let $a=e(c)$. By 2.1 and the remark preceding this lemma, there is some $g \in G$ such that $g\left(u_{r}\right)=-a \cdot u_{r}+a \cdot u_{\pi(r)}$ for every r. This g is induced by π at p, since $a(p)=1$ and hence $g\left(u_{r}\right)(p)=u_{\pi(r)}(p)$.
2.4. Theorem. a) Let $X=\cup\left\{c_{\pi} \mid \pi \in S_{n}\right\}$ be a partition of X into pairwise disjoint clopen subsets such that, for every $p \in c_{\pi}, \pi$ is compatible with p. Put $a_{n}=e\left(c_{\pi}\right)$ for $\pi \in S_{n}$. Then there is $g \in G$ such that, for $1 \leqslant r \leqslant n$,

$$
g\left(u_{r}\right)=\sum\left\{a_{\pi} \cdot u_{\pi(r)} \mid \pi \in S_{n}\right\} .
$$

b) Conversely, let $g \in G$. Then there is a partition $X=\cup\left\{c_{\pi} \mid \pi \in S_{n}\right\}$ of X into pairwise disjoint clopen subsets such that, for $p \in c_{\pi}, \pi$ is compatible with p, and $g\left(u_{r}\right)=\sum\left\{a_{\pi} \cdot u_{\pi(r)} \mid \pi \in S_{n}\right\}$, where $a_{\pi}=e\left(c_{\pi}\right)$.

Proof. First note that $g \in G, a_{\pi}=e\left(c_{\pi}\right)$ where $\left(c_{\pi} \mid \pi \in S_{n}\right)$ is a partition of X and $g\left(u_{r}\right)=\sum\left\{a_{\pi} \cdot u_{\pi(r)} \mid \pi \in S_{n}\right\}$ imply that π is compatible with p for $p \in c_{\pi}$: by $p \in c_{\pi}$, we get $a_{\pi}(p)=1$ and $a_{\rho}(p)=0$ for $\rho \in S_{n}, \rho \neq \pi$. So $g\left(u_{r}\right)(p)=u_{\pi(r)}(p), g$ is induced by π at p, and π is compatible with p.

To prove a), note that $\left\{a_{\pi} \cdot u_{r} \mid \pi \in S_{n}, 1 \leqslant r \leqslant n\right\}$ is a set of pairwise disjoint elements of B with supremum 1 and generating B over A. The existence of g follows by 2.1 and the remark preceding 2.3.

To prove b), let $g \in G$. For $\pi \in S_{n}$, put

$$
v_{\pi}=\{p \in X \mid \pi \text { induces } g \text { at } p\}
$$

Each v_{π} is an open subset of X, and $X=\cup\left\{v_{\pi} \mid \pi \in S_{n}\right\}$: suppose $p \in X$. Define $\pi \in S_{n}$ as follows: let $1 \leqslant r \leqslant n$. If $u_{r}(p)=0$, then $g\left(u_{r}\right)(p)=0$; put $\pi(r)=r$. If $u_{r}(p) \neq 0, u_{r}(p)$ and hence $g\left(u_{r}\right)(p)$ is an atom of B_{p}; let $\pi(r)=l$ where $g\left(u_{r}\right)(p)=u_{l}(p)$. Clearly, $p \in v_{\pi}$.

Since X is a Boolean space, there is a family ($c_{\pi} \mid \pi \in S_{n}$) such that c_{π} is a clopen subset of $v_{\pi}, X=\cup\left\{c_{\pi} \mid \pi \in S_{n}\right\}$ and the c_{π} are pairwise disjoint. Put $a_{\pi}=e\left(c_{\pi}\right)$. Suppose $1 \leqslant r \leqslant n$ and $p \in X$, e.g. $p \in c_{\pi}$. Then $p \in v_{\pi}$ and

$$
\left(\sum\left\{a_{\pi} \cdot u_{\pi(r)} \mid \pi \in S_{n}\right\}\right)(p)=g\left(u_{r}\right)(p)
$$

Theorem 2.4 says that the automorphisms of B over A are completely determined by certain partitions ($a_{n} \mid \pi \in S_{n}$) of A resp. $\left(c_{\pi} \mid \pi \in S_{n}\right)$ of C. Unfortunately, for a given $g \in G$, a partition $\left(c_{\pi} \mid \pi \in S_{n}\right)$ defining g is not uniquely determined, since there may be different possibilities of choosing a clopen disjoint refinement of $\left(v_{\pi} \mid \pi \in S_{n}\right)$. We conclude this section by illustrating 2.4 by several examples.

If H is any group and A a $B A$, let X be the Stone space of A and

$$
H[A]=\{f: X \rightarrow H \mid f \text { is continuous }\}
$$

where H is given the discrete topology. $H[A]$ is a subgroup of H^{X} and is usually called the bounded Boolean power of H by A. Recall that, for $B=A\left(u_{1} \ldots u_{n}\right), A$ and the subalgebra of B generated by u_{1}, \ldots, u_{n} are independent iff $a \cdot u_{r} \neq 0$ for $a \in A \backslash\{0\}, 1 \leqslant r \leqslant n$. A is then relatively complete in B. Conversely, suppose A is relatively complete in B. Then there is a partition ($a_{k} \mid 1 \leqslant k \leqslant n$) of A (some of the a_{k} may equal zero) such that, for each k, the relative algebra $B \upharpoonleft a_{k}=\left\{x \in B \mid x \leqslant a_{k}\right\}$ is generated over $A \upharpoonright . a_{k}$ by k disjoint elements v_{1}, \ldots, v_{k} which are independent from $A \upharpoonleft a_{k}$: for $1 \leqslant r, l \leqslant n$, the set of those $p \in X$ such that $u_{r}(p)=u_{l}(p)$ is clopen. Hence, for $1 \leqslant k \leqslant n, c_{k}=\left\{p \in X \mid B_{p}\right.$ has exactly k atoms $\}$ is
clopen; put $a_{k}=e\left(c_{k}\right)$. By a compactness argument, construct v_{1}, \ldots, v_{k} $\in B \upharpoonright a_{k}$ by patching together some of the u_{r} such that for $p \in c_{k}$, the atoms of B_{p} are $v_{1}(p), \ldots, v_{k}(p)$.
2.5. Example. Suppose $a \cdot u_{r} \neq 0$ for $1 \leqslant r \leqslant n$ and $a \in A \backslash\{0\}$. Then $\operatorname{Aut}_{A} B \cong S_{n}[A]$.

Proof. Our assumption says that $u_{r}(p) \neq 0$ for each r and each $p \in X$. Hence each $\pi \in S_{n}$ is compatible with each $p \in X$ and, for fixed $g \in G$, the open sets v_{π} in the proof of 2.4 are disjoint, hence $c_{\pi}=v_{\pi}$. An isomorphism $\varphi: G \rightarrow S_{n}[A]$ is established by defining $\varphi(g)(p)=\pi$ iff $p \in v_{\pi}$.
2.6. Example. Suppose A is relatively complete in B. Then there is a partition ($a_{k} \mid 1 \leqslant k \leqslant n$) of A such that

$$
\operatorname{Aut}_{A} B \cong S_{1}\left[A \upharpoonright a_{1}\right] \times \ldots \times S_{n}\left[A \upharpoonright a_{n}\right]
$$

Proof. Choose, for $1 \leqslant k \leqslant n, a_{k} \in A$ as indicated above and let G_{k} be the Galois group of $B \upharpoonleft a_{k}$ over $A \upharpoonleft a_{k}$. Clearly,

$$
\operatorname{Aut}_{A} B \cong G_{1} \times \ldots \times G_{n}
$$

since $a_{k} \in A$. By $2.5, G_{k} \cong S_{k}\left[A \upharpoonright a_{k}\right]$.
2.7. Proposition. The following conditions on (B, A) are equivalent:
a) A is relatively complete in B;
b) there is some $g \in G$ such that $g(b) \neq b$ for $b \in B \backslash A$;
c) there is some finite subgroup H of G such that, for every $b \in B \backslash A$, there is some $g \in H$ satisfying $g(b) \neq b$.

Proof. Assume a). There is a finite partition T of C such that, for $1 \leqslant r$ $\leqslant n, t \in T$ and $p, q \in t, u_{r}(p)=0$ iff $u_{r}(q)=0$. For $t \in T$, let $\pi_{t} \in S_{n}$ such that, for $p \in t, \pi_{t}(r)=r$ if $u_{r}(p)=0$ and $u_{r}(p) \mapsto u_{\pi_{l}(r)}(p)$ is a cyclic permutation of the atoms of B_{p} which moves all these atoms. π_{t} is compatible with each $p \in t$; hence there is some $g \in G$ such that g is induced by π_{t} for $p \in t, t \in T$. Now let $b \in B \backslash A$. Choose $p \in X$, e.g. $p \in t$ where $t \in T$, such that $b(p) \notin\{0,1\}$; put $b^{\prime}=g(b)$. Let $\operatorname{At}\left(B_{p}\right)$ be the set of atoms of $B_{p}, M=\left\{\alpha \in A t\left(B_{p}\right) \mid \alpha \leqslant b(p)\right\}, g_{p}$ the automorphism of B_{p} induced by $g, M^{\prime}=\left\{g_{p}(\alpha) \mid \alpha \in M\right\}$. By the choice of π_{t} and g,

$$
b^{\prime}(p)=g_{p}(b(p))=\sum M^{\prime} \neq \sum M=b(p)
$$

which proves $b^{\prime} \neq b-$ since, if π is a cyclic permutation of a finite set Y moving every element of Y and $M \subseteq Y$ satisfies $M=\{\pi(m) \mid m \in M\}$, then $M=\phi$ or $M=Y$.

To prove that b) implies c) it is sufficient to know that every finitely generated subgroup of G is finite. We indicate a construction for finite subgroups of G. Let $T \subseteq C$ be a finite partition of C. A function $\varphi: T \rightarrow S_{n}$ is said to be compatible if, for every $t \in T$ and $p \in t, \varphi(t)$ is compatible with p. For each compatible $\varphi: T \rightarrow S_{n}$ let g_{φ} be the element of G mapping u_{r} to $\sum\left\{e(t) \cdot u_{\varphi(t)(r)} \mid t \in T\right\}$. It is easily seen that

$$
G_{T}=\left\{g_{\varphi} \mid \varphi: T \rightarrow S_{n} \text { compatible }\right\}
$$

is a finite subgroup of G and that every finite subset of G is contained in some G_{T}.

Now suppose c), i.e. there is some finite subgroup H of G moving every $b \in B \backslash A$. We may assume that $H=G_{T}$ for some finite partition T of C. Assume that A is not relatively complete in B. By 2.2 there is some r such that I_{r} is not a principal ideal; w.l.o.g., $r=1$. Let $\sigma=\left\{p \in X \mid u_{1}(p)\right.$ $=0\} \cdot \sigma$ is a subset of X which is open but not closed; choose $p \in X$ which lies in the closure of σ but not in σ. W.l.o.g., for some k satisfying $1 \leqslant k$ $>n$,

$$
\left\{r \mid 1 \leqslant r \leqslant n \text { and } u_{r} \sim u_{1} \text { at } p\right\}=\{1, \ldots, k\} .
$$

Let c be a clopen neighbourhood of p such that, for $1 \leqslant r \leqslant k$ and $q \in c$, $u_{r}(q)=0$ iff $u_{1}(q)=0$. W.l.o.g., $c \in T$. There is some l such that $k<l$ $\leqslant n$ and $u_{l}(p) \neq 0$; otherwise, let $c^{\prime} \subseteq c$ a neighbourhood of p such that $u_{l}(q)=0$ for $q \in c^{\prime}$ and $k<l \leqslant n$. Choose $q \in c^{\prime} \cap \sigma$ (since p lies in the closure of σ). In B_{q}, which has at least two elements, $1=u_{1}(q)+\ldots$ $+u_{n}(q)=0+\ldots+0=0$, a contradiction. - Put $a=e(c)$ and b $=a \cdot u_{1}+\ldots+a \cdot u_{k} . b \in B \backslash A$, since $0<b(p)=u_{1}(p)+\ldots+u_{k}(p)$ <1 by our preceding claim. We prove that, for $g \in H=G_{T}, g(b)=b$, thus arriving at a final contradiction: there is some compatible $\varphi: T \rightarrow S_{n}$ such that $g=g_{\varphi}$. Consider $k \leqslant n, c \in T$ and $p \in c$ as constructed above. Since φ is compatible, $\pi=\varphi(c)$ is compatible with p; hence π maps the set $\{1, \ldots, k\}$ into itself, $g_{\varphi}\left(a \cdot u_{r}\right)=a \cdot u_{\pi(r)}$ for $1 \leqslant r \leqslant k$ (where $a=e(c))$ and $g(b)=b$.

3. Truth values in A for statements about (B, A)

For the rest of this paper, let $\mathscr{L}_{B A}=\{+, \cdot,-, 0,1\}$ the language of $B A \mathrm{~s}$ and $\mathscr{L}=\mathscr{L}_{B A} \cup\{U\}$. Let $T_{B A U}$ be the theory in \mathscr{L} such that the models of $T_{B A U}$ have the form ($B,+, \cdot,-, 0,1, A$) where (B, \ldots) is a $B A$ and A is a subalgebra of B. We abbreviate a model (B, \ldots, A) of $T_{B A U}$ by $\mathscr{M}=(B, A)$. We assume the construction and notations of section 1. For each \mathscr{L}-formula $\varphi\left(x_{1} \ldots x_{n}\right)$ and $b_{1}, \ldots, b_{n} \in B$, we defined

$$
\left\|\varphi\left[b_{1} \ldots b_{n}\right]\right\|=\left\{p \in X \mid B_{p} \models \varphi\left[b_{1}(p) \ldots b_{n}(p)\right]\right\}
$$

where B_{p} abbreviates $\left(B_{p}, 2\right)$ and 2 is the two-element $B A$. Our first claim is that if $c=\left\|\varphi\left[b_{1} \ldots b_{n}\right]\right\|$ is a clopen subset of X for every φ, then $e(c) \in A$ is first-order definable in $\mathscr{M}=(B, A)$ from the parameters b_{1}, \ldots, b_{n} $\in B$:
3.1. Lemma. There is an effective procedure assigning to each formula $\varphi\left(x_{1} \ldots x_{n}\right)$ of \mathscr{L} a formula $s_{\varphi}\left(y x_{1} \ldots x_{n}\right)$ of \mathscr{L} (where y is a variable not occurring in φ) such that for $\mathscr{M}=T_{B A U}$, properties (i) and (ii) are equivalent and (ii) implies (iii):
(i) $\left\|\varphi\left[b_{1} \ldots b_{n}\right]\right\|$ is clopen for every $\varphi\left(x_{1} \ldots x_{n}\right)$ in \mathscr{L} and $b_{1}, \ldots, b_{n} \in B$;
(ii) $\mathscr{M} \models \forall x_{1} \ldots \forall x_{n} \exists y s_{\varphi}\left(y x_{1} \ldots x_{n}\right)$ for every $\varphi\left(x_{1} \ldots x_{n}\right)$ in \mathscr{L};
(iii) if $b_{1}, \ldots, b_{n} \in B$, then $a=e(c)$ where $c=\left\|\varphi\left[b_{1} \ldots b_{n}\right]\right\|$ is the unique element b of B such that $\mathscr{M}=s_{\varphi}\left[b b_{1} \ldots b_{n}\right]$.

Proof. The inductive definition of s_{φ} will show that (i) is equivalent to (ii) and (i) implies (iii), the interesting cases being φ atomic or φ existential. In both cases the fact that $\|\varphi[\ldots]\|$ is clopen will be expressed by stating " $a\left(=e(\|\varphi[\ldots]\|)\right.$ is the largest element of A such that $e^{-1}(a) \subseteq\|\varphi[\ldots]\|$ ". This includes, if φ has the form $\exists x \psi$, the maximum principle for the Boolean valuation

$$
\psi, b_{1} \ldots b_{n} \rightarrow\left\|\psi\left[b_{1} \ldots b_{n}\right]\right\|
$$

of \mathscr{M} in C : there is some $b \in B$ such that

$$
\left\|\psi\left[b^{\prime} b_{1} \ldots b_{n}\right]\right\| \leqslant\left\|\psi\left[b b_{1} \ldots b_{n}\right]\right\|
$$

for every $b^{\prime} \in B$, and hence $\left\|\psi\left[b b_{1} \ldots b_{n}\right]\right\|=\left\|\exists x \psi\left[x b_{1} \ldots b_{n}\right]\right\|$. We now proceed to define the formulas s_{φ}.
a) Suppose φ is an atomic formula of $\mathscr{L}_{B A}$, i.e. φ has the form $t_{1}\left(x_{1} \ldots x_{n}\right)$ $=t_{2}\left(x_{1} \ldots x_{n}\right)$ where t_{1}, t_{2} are terms in $\mathscr{L}_{B A}$. Let $s_{\varphi}\left(y x_{1} \ldots x_{n}\right)$ be the formula

$$
U(y) \wedge y \cdot t_{1}=y \cdot t_{2} \wedge \forall y^{\prime}\left(U\left(y^{\prime}\right) \wedge y^{\prime} \cdot t_{1}=y^{\prime} t_{2} \rightarrow y^{\prime} \leqslant y\right)
$$

b) Suppose φ has the form $U\left(t\left(x_{1} \ldots x_{n}\right)\right)$ where t is a term in $\mathscr{L}_{B A}$. Let ψ, χ be the atomic $\mathscr{L}_{B A}$-formulas " $t=1$ " resp. " $t=0$ ". Let s_{φ} be the formula

$$
\exists y_{1} \exists y_{2}\left[y=y_{1}+y_{2} \wedge s_{\psi}\left(y_{1} x_{1} \ldots x_{n}\right) \wedge s_{x}\left(y_{2} x_{1} \ldots x_{n}\right)\right]
$$

c) Suppose φ has the form $\neg \psi\left(x_{1} \ldots x_{n}\right)$. Let s_{φ} be the formula

$$
\exists y_{1}\left[y=-y_{1} \wedge s_{\psi}\left(y_{1} x_{1} \ldots x_{n}\right)\right]
$$

d) Suppose φ has the form $\psi\left(x_{1} \ldots x_{n}\right) \vee \chi\left(x_{1} \ldots x_{n}\right)$. Let s_{φ} be the formula

$$
\exists y_{1} \exists y_{2}\left[y=y_{1}+y_{2} \wedge s_{\psi}\left(y_{1} x_{1} \ldots x_{n}\right) \wedge s_{\chi}\left(y_{2} x_{1} \ldots x_{n}\right)\right] .
$$

e) Suppose φ has the form $\exists x \psi\left(x x_{1} \ldots x_{n}\right)$. Let s_{φ} be the formula

$$
\exists x s_{\psi}\left(y x x_{1} \ldots x_{n}\right) \wedge \forall x^{\prime} \forall y^{\prime}\left[s_{\psi}\left(y^{\prime} x^{\prime} x_{1} \ldots x_{n}\right) \rightarrow y^{\prime} \leqslant y\right] .
$$

Let σ be the $\mathscr{L}_{B A}$-formula stating that the supremum of the atoms of a $B A$ exists; σ^{U} is the relativization of σ to the one-place predicate U of \mathscr{L}. The models of $T_{B A} \cup\{\sigma\}$ are called separated $B A$ s in [3]. Let T be the \mathscr{L}-theory

$$
\begin{gathered}
T=T_{B A U} \cup\left\{\forall x_{1} \ldots \forall x_{n} \exists y s_{\varphi}\left(y x_{1} \ldots x_{n}\right) \mid \varphi\left(x_{1} \ldots x_{n}\right) \text { in } \mathscr{L}\right\} \\
\cup\left\{\sigma^{U}, s_{\sigma}(1)\right\}
\end{gathered}
$$

The last two axioms of T express, for a model $\mathscr{M}=(B, A)$ of $T_{B A U}$, that A and each stalk B_{p} are separated $B A$ s. Let \mathbf{K} be the class of \mathscr{L}-structures $\mathscr{M}=(B, A)$ where B is a $c B A$ and A is relatively complete in B. We shall prove in section 4 that T is an axiomatization of the first-order theory of \mathbf{K}. The easy part of this is:

3.2. Theorem. Each structure \mathscr{M} in \mathbf{K} is a model of T.

Proof. Let $\mathscr{M}=(B, A) \in \mathbf{K}$, i.e. B is complete and A is relatively complete in B. Hence $\mathscr{M} \rightleftharpoons T_{B A U}$ and A is a separated $B A$. By 1.1, $\left\|\varphi\left[b_{1} \ldots b_{n}\right]\right\|$ is clopen for every atomic formula φ of \mathscr{L} and arbitrary $b_{1}, \ldots, b_{n} \in B$. If $\left\|\varphi\left[b_{1} \ldots b_{n}\right]\right\|$ and $\|\left[\psi\left[b_{1} \ldots b_{n}\right] \|\right.$ are clopen subsets of X, so are $\left\|\neg \varphi\left[b_{1} \ldots b_{n}\right]\right\|$ and $\left\|(\varphi \vee \psi)\left[b_{1} \ldots b_{n}\right]\right\|$. Hence we assume that φ
has the form $\exists x \psi\left(x x_{1} \ldots x_{n}\right)$ and that $\left\|\psi\left[b b_{1} \ldots b_{n}\right]\right\|$ is clopen for fixed $b_{1}, \ldots, b_{n} \in B$ and arbitrary $b \in B$. For the rest of the proof, we omit the parameters $b_{1} \ldots, b_{n}$. Let

$$
u=\cup\{\|\psi[\beta]\| \mid \beta \in B\}
$$

By our inductive assumption, u is an open subset of X. Choose, by Zorn's lemma, a maximal family $F=\left\{\left(b_{i}, c_{i}\right) \mid i \in I\right\}$ such that $b_{i} \in B, c_{i}$ is a clopen subset of $u, c_{i} \subseteq\left\|\psi\left[b_{i}\right]\right\|, i \neq j$ implies $c_{i} \cap c_{j}=\phi$. It follows that c, the closure of $\cup c_{i}$, includes u (by maximality of F). A is a $c B A$, $i \in I$
hence X is extremally disconnected and c is clopen. By completeness of B, there is some $b \in B$ such that $b \cdot e\left(c_{i}\right)=b_{i}$ for $i \in I$. Thus, for $i \in I, c_{i}$ $\subseteq\|\psi[b]\|$. So, for $\beta \in B,\|\psi[\beta]\| \subseteq u \subseteq c \subseteq\|\psi[b]\|=\|\exists x \psi(x)\|$.

Finally we show that B_{p} is separated for each $p \in X$. Let $\alpha(x)$ be the $\mathscr{L}_{B A}$-formula stating that x is an atom and let $\beta(x), \gamma(x)$ be the $\mathscr{L}_{B A^{-}}$ formulas $\alpha(x) \vee x=0$ resp. $\forall y(\alpha(y) \rightarrow y \leqslant x)$. Put $M=\{f \in B \mid$ $\|\beta[f]\|=1 \|$ and let b be the supremum of M in B. We show that $b(p)$ is, for each $p \in X$, the supremum of the atoms of B_{p}.

First suppose $s \in B_{p}$ is an atom of B_{p}. There is some $f \in M$ such that $f(p)=s$ (note that $\|\alpha[f]\|$ is clopen for each $f \in B$). So $f \leqslant b$ and $s=f(p)$ $\leqslant b(p)$. - On the other hand, suppose $t \in B_{p}$ and $s \leqslant t$ for every atom s of B_{p}. Choose $g \in B$ such that $g(p)=t$. Then $p \in c=\|\gamma[g]\|$. For $f \in M, e(c) \cdot f \leqslant g$, since $q \in c$ implies that $f(q)$ is zero or an atom of B_{q} and thus $f(q) \leqslant g(q)$. By the definition of $b, e(c) \cdot b \leqslant g$. This implies (by $p \in c$) $b(p) \leqslant g(p)=t$.

4. Decidability and completions of Th (K)

Call $T_{s B A}=T_{B A} \cup\{\sigma\}$ the theory of separated $B A S$, where $T_{B A}$ is the theory of $B A s$ and σ was defined in section 3. We give a short review of the completions of $T_{s B A}$. Let, for $n \in \omega, \varphi_{n}$ be the $\mathscr{L}_{B A}$-sentence stating that there are exactly n atoms and ψ the $\mathscr{L}_{B A}$-sentence stating that there is a non-zero atomless element. Let $\chi_{n}=\neg\left(\varphi_{0} \vee \ldots \vee \varphi_{n-1}\right)$; so χ_{n} says that there are at least n atoms. Define, for $n \in \omega+1$ and $i \in 2=\{0,1\}$, an $\mathscr{L}_{B A}$-theory $T_{n i}$ by

$$
\begin{aligned}
& T_{n 0}=T_{s B A} \cup\left\{\varphi_{n}, \neg \psi\right\} \\
& T_{n 1}=T_{s B A} \cup\left\{\varphi_{n}, \psi\right\}
\end{aligned}
$$

for $n \in \omega$, and

$$
\begin{aligned}
& T_{\omega 0}=T_{s B A} \cup\left\{\chi_{n} \mid n \in \omega\right\} \cup\{\neg \psi\} \\
& T_{\omega 1}=T_{s B A} \cup\left\{\chi_{n} \mid n \in \omega\right\} \cup\{\psi\} .
\end{aligned}
$$

Put $\tau=\left\{T_{n i} \mid n \in \omega+1, i \in 2\right\}$. It is then clear that each separated $B A$ satisfies exactly one of the theories in τ, and for each $t \in \tau$ there is a $c B A$ satisfying t. Moreover, any two models of any $t \in \tau$ are elementarily equivalent by 5.5 .10 in [1]. Thus the theories $t \in \tau$ are just the completions of $T_{s B A}$ and can be thought of as being the elementary equivalence types of separated BAs or $c B A s$. Moreover, an $\mathscr{L}_{B A}$-sentence holds in every separated $B A$ iff it holds in every $c B A$. The following proposition is essential for the main theorems of this section:
4.1. Proposition. Let $s, t \in \tau$. Then there is a structure (B, A) in \mathbf{K} such that A is a model of s and each stalk B_{p} is a model of t.

Proof. By the above remarks, choose $c B A s A$ and F which are models of s resp. t. Let $A * F$ be the free product of A and F. Thus A is relatively complete in $A * F$ and each stalk $(A * F)_{p}$, where p is an ultrafilter of A, is easily seen to be isomorphic to F, hence a model of t. Unfortunately, $A * F$ is incomplete unless A or F is finite. So let $B=(A * F)^{*}$ be the completion of $A * F$; note that $A * F$ is a dense subalgebra of B. (B, A) $\in \mathbf{K}$, since the inclusion maps from A to $A * F$ and from $A * F$ to B are complete. For $p \in X$ (the Stone space of A), B_{p} is a separated $B A$ by 3.2 but in general a proper extension of $(A * F)_{p}$. We show, with the notations of section 1, that B_{p} is elementarily equivalent to F. For the following proof of this, recall that, for $f \in F \backslash\{0\}$ and $p \in X, \pi_{p}(f)=f(p) \neq 0$ since F is independent from A in $A * F \subseteq B$. Thus, the restriction of $\pi_{p}: B \rightarrow B_{p}$ to F is a monomorphism. The elementary equivalence of B_{p} and F is established by the following four claims.

Claim 1. For each atom f of $F, f(p)$ is an atom of B_{p} (hence, if F has at least n atoms, where $n \in \omega$, then B_{p} has at least n atoms): clearly, $f(p)>0$ for $p \in X$. Assume that

$$
u=\left\{p \in X \mid f(p) \text { is not an atom of } B_{p}\right\}
$$

is non-empty. By 3.2, u is a clopen subset of X. Choose, by the maximum principle stated in section $3, b \in B$ such that $b(p)=0$ for $p \notin u$ and $0<b(p)$ $<f(p)$ for $p \in u$. Since $b>0$, choose $a \in A$ and $g \in F$ such that $0<a \cdot g$ $\leqslant b$; let $p \in X$ such that $a(p) \cdot g(p) \neq 0$. Thus $p \in u, a(p)=1$, and
$0<g(p) \leqslant b(p)<f(p)$. It follows that $0<g<f$, contradicting the fact that f was an atom of F.

Claim 2. If B_{p} has at least n atoms, where $1 \leqslant n<\omega$, then F has at least n atoms: assume that M is a subset of $\operatorname{At}\left(B_{p}\right)$, the set of atoms of B_{p}, such that M has exactly n elements but $\operatorname{At}(F)$ has at most $n-1$ elements. We prove:
(a) Let $x \in M$. Then there is $f_{x} \in A t(F)$ such that $f_{x}(p)=x$.

Claim 2 follows from (a), since the assignment of f_{x} to x is injective. And (a) will follow from
(b) Let $x \in M, u$ a clopen neighbourhood of p such that, w.l.o.g., for $q \in u, B_{q}$ has at least one atom. Let $b \in B$ such that, for $q \notin u, b(q)=0$ and for $q \in u, b(q)$ is an atom of B_{q}, and $b(p)=x$. Then there are $q \in u$ and $f \in A t(F)$ such that $f(q)=b(q)$. (Hence $\operatorname{At}(F)$ is nonempty).

Proof of (b). By $b>0$, choose $a \in A, f \in F$ such that $0<a \cdot f \leqslant b$. Since $b(q)=0$ for $q \notin u$, there is some $q \in u$ such that $a(q) \cdot f(q) \neq 0$, which implies $0<f(q) \leqslant b(q) \cdot f(q)=b(q)$, since $b(q)$ is an atom of B_{q}. Finally $f \in A t(F)$, since a splitting of f in F into two non-zero disjoint elements would give rise to a splitting of $b(q)$ in B_{q}.

Proof of (a). Let $x \in M$ and choose u and b as in (b). Assume (a) is false. Then, for each $f \in A t(F), f(p) \neq x=b(p)$; by finiteness of At (F), there is a clopen neighbourhood v of p such that, for $q \in v$ and $f \in A t(F), b(q) \neq f(q)$. Let $c \in B$ such that $c(q)=0$ for $q \notin v$ and $c(q)$ $=b(q)$ for $q \in v$. This contradicts (b), applied to v and c instead of u and b.

Claim 3. If F has a non-zero atomless element f (which means that $F \upharpoonleft f$ is atomless), then each B_{p} has a non-zero atomless element x : let $x=\pi_{p}(f) . x>0$, since π_{p} is one-one on $F . F \upharpoonright f$ and hence, by Claim 2, $(B \upharpoonleft f)_{p}$ is atomless. So $B_{p} \upharpoonleft x=\pi_{p}(B \upharpoonleft f)=(B \upharpoonleft f)_{p}$ is atomless.

Claim 4. If B_{p} has a non-zero atomless element x, then F has a non-zero atomless element f : assume that F is atomic. Let

$$
u=\left\{q \in X \mid B_{q} \text { is not atomic }\right\}
$$

u is a clopen neighbourhood of p. By the maximum principle, choose $b \in B$ such that $b(q)=0$ for $q \notin u, b(q)$ is a non-zero atomless element of
B_{q} for $q \in u, b(p)=x$. Choose $a \in A, g \in F$ such that $0<a \cdot g \leqslant b$; w.l.o.g., g is an atom of F. Choose $q \in X$ such that $a(q) \cdot g(q) \neq 0$. Thus $q \in u$ and $g(q) \leqslant b(q)$. By Claim 1, $g(q)$ is an atom of B_{q}, contradicting the choice of $b(q)$.
4.2. Remark. Suppose that, for every i in an index set $I, \mathscr{M}_{i}=\left(B_{i}, A_{i}\right)$ is an element of \mathbf{K}. Then $\mathscr{M}=(B, A)$, where $B=\prod_{i \in I} B_{i}$ and $A=\prod_{i \in I} A_{i}$, is in \mathbf{K}. Let $\varphi\left(x_{1} \ldots x_{k}\right)$ be an \mathscr{L}-formula and $b_{1}, \ldots, b_{k} \in B, b_{j}=\left(b_{i j}\right)_{i \in I}$. Put $a_{i}=e\left(\left\|\varphi\left[\begin{array}{lll}b_{i 1} & \ldots & b_{i k}\end{array}\right]\right\|^{M_{i}}\right)$. Then

$$
e\left(\left\|\varphi\left[b_{1} \ldots b_{k}\right]\right\|^{\mathcal{M}}\right)=\left(a_{i}\right)_{i \in I}
$$

Proof. By induction on the complexity of φ.
We shall need the following Feferman-Vaught theorem about sheaves over Boolean spaces from [2]:
4.3. Theorem (Comer). Let \mathscr{L} be an arbitrary language. There is an effective assignment

$$
\varphi\left(x_{1} \ldots x_{k}\right) \mapsto\left(\Phi ; \vartheta_{1}, \ldots, \vartheta_{m}\right)
$$

for \mathscr{L}-formulas $\varphi\left(x_{1} \ldots x_{k}\right)$ such that
a) $\vartheta_{1}, \ldots, \vartheta_{m}$ are \mathscr{L}-formulas having at most the free variables $x_{1} \ldots x_{k}$, and

$$
\vDash\left(\underset{1 \leq i \leq m}{\vee} \vartheta_{i}\right) \wedge \widehat{1 \leq i<j \leq m}^{\overbrace{i}} \neg\left(\vartheta_{i} \wedge \vartheta_{j}\right)
$$

b) Φ is an $\mathscr{L}_{B A}$-formula having at most the free variables $y_{1} \ldots y_{m}$;
c) for each sheaf $\mathscr{S}=(S, \pi, X . \mu)$ of \mathscr{L}-structures such that X is a Boolean space and $\left\|\psi\left[f_{1} \ldots f_{n}\right]\right\|$ is a clopen subset of X for every $\psi\left(x_{1} \ldots x_{n}\right)$ in \mathscr{L} and $f_{1}, \ldots, f_{n} \in \Gamma(\mathscr{P}):$ if $b_{1}, \ldots, b_{k} \in \Gamma(\mathscr{P})$, then

$$
\Gamma(\mathscr{S})=\varphi\left[b_{1} \ldots b_{k}\right] \quad \text { iff } \quad C \models \Phi\left[c_{1} \ldots c_{m}\right]
$$

where C is the $B A$ of clopen subsets of X and $c_{i}=\left\|\vartheta_{i}\left[b_{1} \ldots b_{k}\right]\right\|$.
For two separated BAs A and A^{\prime}, let I be the set of partial functions f from A to A^{\prime} such that $\operatorname{dom}(f)=\left\{a_{1}, \ldots, a_{n}\right\}$ is a finite partition of A (where some of the a_{i} may be zero), $\operatorname{rge}(f)=\left\{a_{1}{ }^{\prime}, \ldots, a_{n}{ }^{\prime}\right\}$ where $a_{i}{ }^{\prime}$ $=f\left(a_{i}\right)$ is a partition of A^{\prime}, and every $A \upharpoonright a_{i}$ is elementarily equivalent
to $A^{\prime} \upharpoonright a_{i}{ }^{\prime}$. If A, A^{\prime} are \aleph_{1}-saturated or σ-complete, the following conditions are equivalent:
a) $A \equiv A^{\prime}$;
b) I is non-empty;
c) I has the back-and-forth property.

Moreover, if $f \in I$ is as above and A, A^{\prime} are arbitrary separated $B A s$, then $\left(A, a_{1}, \ldots, a_{n}\right) \equiv\left(A^{\prime}, a_{1}{ }^{\prime}, \ldots, a_{n}{ }^{\prime}\right)$.

Let $T_{s B A 2}$ be the \mathscr{L}-theory

$$
T_{s B A 2}=T_{s B A} \cup\{\forall x(U(x) \leftrightarrow x=0 \vee x=1)\} .
$$

Since $T_{B A}$ is decidable, $T_{s B A}$ and $T_{s B A 2}$ are decidable.
4.4. Theorem. There is an effective procedure deciding for every \mathscr{L} sentence φ whether $T \vdash \varphi$. Moreover, $T \vdash \varphi$ if and only if φ holds in every model \mathscr{M} in \mathbf{K}.

Proof. Let φ be given. Construct $\left(\Phi\left(y_{1} \ldots y_{m}\right) ; \vartheta_{1}, \ldots, \vartheta_{m}\right)$ by 4.3. For every i such that $1 \leqslant i \leqslant m$, decide whether $T_{s B A 2} \vdash \neg \vartheta_{i}$. W.l.o.g., assume that $T_{s B A 2} \cup\left\{\vartheta_{i}\right\}$ is consistent for $1 \leqslant i \leqslant r$ and inconsistent for $r+1 \leqslant i \leqslant m$. By $\vdash \vartheta_{1} \vee \ldots \vee \vartheta_{m}$, we have $1 \leqslant r$ (it is possible that $r=m$). Next, construct the formula

$$
\Phi^{\prime}\left(y_{1} \ldots y_{m}\right)=\left(\widehat{r+1 \leqslant i \leq m}\left(y_{i}=0\right) \rightarrow \Phi\left(y_{1} \ldots y_{m}\right)\right) .
$$

We show the equivalence of
a) $T \vdash \varphi$;
b) $\mathscr{M} \vDash \varphi$ for every $\mathscr{M} \in \mathbf{K}$;
c) $T_{s B A} \vdash \forall y_{1} \ldots \forall y_{m} \Phi^{\prime}\left(y_{1} \ldots y_{m}\right)$.

Then, by decidability of $T_{s B A}, T$ is decidable and 4.4 is proved. a) implies b) by 3.2. To prove that c) implies a), assume there is $\mathscr{M} \models T$ such that $\mathscr{M} \mid \neq \varphi$, e.g. $\mathscr{M}=(B, A)$. Put $a_{i}=e\left(\left\|\vartheta_{i}\right\|^{\mathscr{M}}\right)$. By 4.3 and $\mathscr{M} \neq \varphi$, we see $A \neq \Phi\left[a_{1} \ldots a_{m}\right]$. By our choice of $r \leqslant m$, we get $a_{r+1}=\ldots=a_{m}=0$. Thus $A \not \neq \Phi^{\prime}\left[a_{1} \ldots a_{m}\right]$ and c) is false. Now assume c) does not hold; we show that b) is false. Let A^{\prime} be a separated $B A$ and $a_{1}{ }^{\prime}, \ldots, a_{m}{ }^{\prime} \in A^{\prime}$ such that $a_{r+1}{ }^{\prime}=\ldots=a_{m}{ }^{\prime}=0$ and $A^{\prime} \neq \Phi\left[a_{1}{ }^{\prime} \ldots a_{m}{ }^{\prime}\right]$. W.l.o.g., $a_{i}{ }^{\prime} \neq 0$ for $1 \leqslant i$ $\leqslant r$. By choice of r, there are $t_{1}, \ldots, t_{r} \in \tau$ such that $t_{i}=\vartheta_{i}$ for $1 \leqslant i \leqslant r$.

Let, for these i, s_{i} be the element of τ such that $A^{\prime} \wedge a_{i}{ }^{\prime} \models s_{i}$. By 4.1, there are $\mathscr{M}=(B, A) \in \mathbf{K}$ and $a_{1}, \ldots, a_{r} \in A$ such that $1=a_{1}+\ldots+a_{r}, a_{i} \cdot a_{j}$ $=0$ for $1 \leqslant i<j \leqslant r, A \uparrow a_{i}=s_{i}$ and $\left(B \uparrow a_{i}\right)_{p} \models t_{i}$ for those $p \in X$ satisfying $a_{i}(p)=1$. So $e\left(\left\|\vartheta_{i}\right\|^{M}\right)=a_{i}$ by 4.2. Put $a_{r+1}=\ldots=a_{m}=0$. It follows that $\left(A, a_{1}, \ldots, a_{m}\right) \equiv\left(A^{\prime}, a_{1}{ }^{\prime}, \ldots, a_{m}{ }^{\prime}\right), A \not \equiv \Phi\left[a_{1} \ldots a_{m}\right]$ and $\mathscr{M} \neq \varphi$ by 4.3.

In the next theorem, we characterize elementary equivalence of models of T. Call the following sentences in $\mathscr{L}_{B A}$ basic sentences: $\varphi_{n} \wedge \psi, \varphi_{n} \wedge \neg \psi$, $\chi_{n} \wedge \psi, \chi_{n} \wedge \neg \psi($ where $n \in \omega)$. It follows by the analysis of the completions of $T_{s B A}$ given in the beginning of this section that for each $\mathscr{L}_{B A}{ }^{-}$ sentence ϑ there are basic sentences $\beta_{1}, \ldots, \beta_{n}$ such that

$$
T_{s B A} \vdash\left(\vartheta \leftrightarrow \bigvee_{i=1}^{n} \beta_{i}\right) \wedge \widehat{1 \leq i<j \leq n}^{\sim}\left(\beta_{i} \wedge \beta_{j}\right)
$$

This fact is easily extended to $T_{s B A 2}$: by replacing each atomic formula $U(t)$ where t is a term in $\mathscr{L}_{B A}$ by " $t=0 \vee t=1$ ", we see that for each \mathscr{L} sentence ϑ there are basic sentences $\beta_{1}, \ldots, \beta_{n}$ satisfying

$$
T_{s B A 2} \vdash\left(\vartheta \leftrightarrow \bigvee_{i=1}^{n}\right) \wedge \widehat{1 \leq i<j \leq n}^{\overbrace{i}} \neg\left(\beta_{i} \wedge \beta_{j}\right)
$$

Now, if β, γ are basic sentences, let $\sigma_{\beta \gamma}$ be the following \mathscr{L}-sentence :

$$
\sigma_{\beta \gamma}=\exists y\left(\gamma^{y} \wedge s_{\beta}(y)\right),
$$

where $s_{\beta}(y)$ is the \mathscr{L}-formula assigned to β in 3.1 and γ^{y} is the result of relativizing the quantifiers $\exists x \varphi \ldots$ in γ to $\exists x\left(U(x) \wedge x \leqslant y \wedge \varphi^{y} \ldots\right)$. A model (B, A) of T satisfies $\sigma_{\beta \gamma}$ iff $A \upharpoonright a \mid=\gamma$, where $a=e(c)$ and c $=\|\beta\|$.
4.5. Theorem. Let $\mathscr{M}=(B, A), \mathscr{M}^{\prime}=\left(B^{\prime}, A^{\prime}\right)$ be models of T. Then \mathscr{M} is elementarily equivalent to \mathscr{M}^{\prime} if and only if,for any basic sentences β, γ,

$$
\mathscr{M} \models \sigma_{\beta \gamma} \quad \text { iff } \quad \mathscr{M}^{\prime}=\sigma_{\beta \gamma} .
$$

Proof. The only-if-part is clear. Suppose that \mathscr{M} and \mathscr{M}^{\prime} satisfy the same sentences of the form $\sigma_{\beta \gamma}$. Let φ be an \mathscr{L}-sentence and $\mathscr{M} \models \varphi$; we want to show that $\mathscr{M}^{\prime} \equiv \varphi . \operatorname{Let}\left(\Phi\left(y_{1} \ldots y_{m}\right) ; \vartheta_{1}, \ldots, \vartheta_{m}\right)$ be the sequence assigned to φ by 4.3 ; every ϑ_{i} is an \mathscr{L}-sentence. Put $a_{i}=e\left(\left\|\vartheta_{i}\right\|^{\mathcal{M}}\right)$; by 4.3 and $e: C \rightarrow A$ being an isomorphism, we have that $\left\{a_{1}, \ldots, a_{m}\right\}$
is a partition of A and $A \models \Phi\left[a_{1} \ldots a_{m}\right]$. In the same way, put $a_{i}{ }^{\prime}=e^{\prime}\left(\left\|\vartheta_{i}\right\|^{M \prime}\right) ;\left\{a_{1}{ }^{\prime}, \ldots, a_{m}{ }^{\prime}\right\}$ is a partition of A^{\prime}. It is sufficient to show that $\left(A, a_{1}, \ldots, a_{m}\right) \equiv\left(A^{\prime}, a_{1}{ }^{\prime}, \ldots, a_{m}{ }^{\prime}\right)$, for this implies $A^{\prime} \models \Phi\left[a_{1}{ }^{\prime} \ldots a_{m}{ }^{\prime}\right]$ and finally $\mathscr{M}^{\prime} \vDash \varphi$ by 4.3.

For every ϑ_{i}, choose basic sentences $\beta_{i 1}, \ldots, \beta_{i n_{i}}$ such that

$$
T_{s B A 2}-\left(\vartheta_{i} \leftrightarrow \bigvee_{j} \beta_{i j}\right) \wedge \widehat{j<l} \neg\left(\beta_{i j} \wedge \beta_{i l}\right)
$$

Put $\alpha_{i j}=e\left(\left\|\beta_{i j}\right\|^{M}\right), \alpha_{i j}{ }^{\prime}=e^{\prime}\left(\left\|\beta_{i j}\right\|^{M^{\prime}}\right)$ for $1 \leqslant i \leqslant m, \quad 1 \leqslant j \leqslant n_{i}$. Then a_{i} is the disjoint sum of the $\alpha_{i j}\left(1 \leqslant j \leqslant n_{i}\right), a_{i}$ ' is the disjoint sum of the $\alpha^{\prime}{ }_{i j}\left(1 \leqslant j \leqslant n_{i}\right)$. For every i, j,

$$
A!\alpha_{i j} \equiv A^{\prime} \upharpoonleft \alpha_{i j}^{\prime}:
$$

let γ be any basic sentence of $\mathscr{L}_{B A}$ and assume $A \upharpoonright \alpha_{i j}=\gamma$; we want to show that $A^{\prime} \upharpoonright \alpha_{i j}{ }^{\prime}=\gamma$. But $A \upharpoonright \alpha_{i j}=\gamma$ means that $\mathscr{M} \models \sigma_{\beta_{i j \gamma}}$. By our main assumption, $\mathscr{M}^{\prime}=\sigma_{\beta_{i j} \gamma}$ and $A^{\prime} \upharpoonright \alpha_{i j}^{\prime}=\gamma$.

We have shown that the partial function f mapping $\alpha_{i j}$ to $\alpha_{i j}{ }^{\prime}$ is an element of the set of back-and-forth-isomorphisms defined after 4.3. Hence,

$$
\left(A, \alpha_{11}, \ldots, \alpha_{m n_{m}}\right) \equiv\left(A^{\prime}, \alpha_{11}{ }^{\prime}, \ldots, \alpha_{m n_{m}}{ }^{\prime}\right)
$$

and

$$
\left(A, a_{1}, \ldots, a_{m}\right) \equiv\left(A^{\prime}, a_{1}^{\prime}, \ldots, a_{m}^{\prime}\right)
$$

We shall finally describe the completions of T by giving a one-one correspondance between a set P (consisting of pairs of mappings from $\omega \times 2$ to $(\omega+1) \times 2$) and these completions. For $m, m^{\prime} \in \omega+1$ and $j, j^{\prime} \in 2$, define

$$
(m, j)+\left(m^{\prime}, j^{\prime}\right)=\left(m^{\prime \prime}, j^{\prime \prime}\right)
$$

where $m^{\prime \prime}$ is the cardinal sum of m and m^{\prime} and $j^{\prime \prime}$ is the maximum of j and j^{\prime}. Let

$$
\begin{aligned}
& P=\{(\alpha, \rho) \mid \alpha, \rho: \omega \times 2 \rightarrow(\omega+1) \times 2 \text { and, for } \\
& \\
& \quad(n, i) \in \omega \times 2, \rho(n, i)=\rho(n+1, i)+\alpha(n, i)\} .
\end{aligned}
$$

In the following definition, we refer to the $\mathscr{L}_{B A}$-theories $T_{n i}$ defined in the beginning of this section. For $(\alpha, \rho) \in P$, let $T_{\alpha \rho}$ the \mathscr{L}-theory

$$
\begin{aligned}
T_{\alpha \rho}=T & \cup\left\{\exists x\left(\sigma_{\left(\varphi_{n} \wedge \neg \psi\right)}(x) \wedge \gamma^{x}\right) \mid n \in \omega, \gamma \in T_{\alpha(n, 0)}\right\} \\
& \cup\left\{\exists x\left(\sigma_{\left(x_{n} \wedge \neg \psi\right)}(x) \wedge \gamma^{x}\right) \mid n \in \omega, \gamma \in T_{\rho(n, 0)}\right\} \\
& \cup\left\{\exists x\left(\sigma_{\left(\varphi_{n} \wedge \psi\right)}(x) \wedge \gamma^{x}\right) \mid n \in \omega, \gamma \in T_{\alpha(n, 1)}\right\} \\
& \cup\left\{\exists x\left(\sigma_{\left(x_{n} \wedge \psi\right)}(x) \wedge \gamma^{x}\right) \mid n \in \omega, \gamma \in T_{\rho(n, 1)}\right\} .
\end{aligned}
$$

If $\mathscr{M}=(B, A)$ is a model of T, then $\mathscr{M} \models T_{\alpha \rho}$ iff, for $a_{1}=e\left(\left\|\varphi_{n} \wedge \neg \psi\right\|^{M}\right)$ $A \wedge a_{1} \mid=T_{\alpha(n, 0)}, \ldots$, for $a_{4}=e\left(\left\|\chi_{n} \wedge \psi\right\|^{M}\right), A \upharpoonleft a_{4} \mid=T_{\rho(n, 1)}$.
4.6. Theorem. $\left\{T_{\alpha \rho} \mid(\alpha, \rho) \in P\right\}$ is the set of completions of T. Moreover, each $T_{\alpha \rho}$ has a model in \mathbf{K}.

Proof. If (α, ρ) and ($\alpha^{\prime}, \rho^{\prime}$) are different elements of P, then $T_{\alpha \rho} \cup T_{\alpha^{\prime} \rho^{\prime}}$ is inconsistent (recall that every $T_{m j}$, where $m \in \omega+1, j \in 2$, is complete in $\left.\mathscr{L}_{B A}\right)$. If \mathscr{M} is a model of T, there is some $(\alpha, \rho) \in P$ such that $\mathscr{M} \mid=T_{\alpha \rho}$ (e.g., put $a_{1}=e\left(\left\|\varphi_{n} \wedge \neg \psi\right\|^{\mathcal{M}}\right.$) and let $\alpha(n, 0)$ be the pair $(k, j) \in(\omega+1)$ $\times 2$ such that $A \upharpoonright a_{1} \vDash T_{k j}$, etc.). If $(\alpha, \rho) \in P$ and $\mathscr{M}, \mathscr{M}^{\prime}$ are models of $T_{\alpha \rho}$, then \mathscr{M} and \mathscr{M}^{\prime} are elementarily equivalent by 4.5 , since $T_{\alpha \rho}$ says which sentences of the form $\sigma_{\beta \gamma}$ are satisfied in \mathscr{M} and \mathscr{M}^{\prime}. So it is sufficient to prove that each $T_{\alpha \rho}$ has a model which lies even in \mathbf{K}.

For simplicity, we construct $\mathscr{M} \in \mathbf{K}$ satisfying the part of $T_{\alpha \rho}$ which refers to $T_{\alpha(n, 0)}$ and $T_{\rho(n, 0)}$ - for, if $\mathscr{N} \in \mathbf{K}$ satisfies the part of $T_{\alpha \rho}$ which refers to $T_{\alpha(n, 1)}$ and $T_{\rho(n, 1)}$, then $\mathscr{M} \times \mathscr{N} \in \mathbf{K}$ is a model of $T_{\alpha \rho}$. Abbreviate $\alpha(n, 0)$ by $t_{n}, \rho(n, 0)$ by s_{n}. We first construct a complete $B A A$ and a sequence $\left(a_{n}\right)_{n \in \omega}$ in A such that the a_{n} are pairwise disjoint and

$$
\text { (*) } A \upharpoonright a_{n} \vDash t_{n}, \quad A \upharpoonright r_{n} \mid=s_{n}
$$

where $r_{n}=-\left(a_{0}+\ldots+a_{n-1}\right)$. Let A be a complete $B A$ which is a model of s_{0}. Suppose $a_{0}, \ldots, a_{n-1} \in A$ are pairwise disjoint and $a_{0}, \ldots, a_{n-1}, r_{n}$ satisfy (*). Since $s_{n}=s_{n+1}+t_{n}, A \upharpoonright r_{n} \vDash s_{n}$ and A is complete, there are a_{n} and $r_{n+1} \in A$ such that $r_{n}=a_{n}+r_{n+1}, a_{n} \cdot r_{n+1}=0, A \upharpoonleft a_{n}=t_{n}$ and $A \upharpoonright r_{n+1} \vDash s_{n+1}$. - Finally, let $a_{\omega}=-\sum_{n \in \omega} a_{n}$. By the proof of 4.1, there is, for $n \in \omega, \mathscr{M}_{n}=\left(B_{n}, A_{n}\right) \in \mathbf{K}$ such that $A_{n}=A \upharpoonleft a_{n}$ and each stalk $\left(B_{n}\right)_{p}$ of the sheaf representation of \mathscr{M}_{n} is a model of $\varphi_{n} \wedge \neg \psi$. Moreover there is $\mathscr{M}_{\omega}=\left(B_{\omega}, A_{\omega}\right) \in \mathbf{K}$ such that $A_{\omega}=A \upharpoonright a_{\omega}$ and each stalk $\left(B_{\omega}\right)_{p}$ of the sheaf representation of \mathscr{M}_{ω} is a model of $T_{\omega 0}$. Put \mathscr{M} $=(B, A)$ where B is a complete $B A$ which lies over A as $\prod_{n \in \omega} B_{n}$ lies over $\prod_{n \in \omega} A_{n}$. By 4.2, $e\left(\left\|\varphi_{n} \wedge \neg \psi\right\|^{\mathcal{M}}\right)=a_{n}$ and $e\left(\left\|\chi_{n} \wedge \neg \psi\right\|^{\mu}\right)=r_{n}$;so \mathscr{M} is a model of the part of $T_{\alpha \rho}$ referring to $T_{\alpha(n, 0)}$ and $T_{\rho(n, 0)}$.

REFERENCES

[1] Chang, C. C. and H. J. Keisler. Model Theory. Amsterdam-London, 1973.
[2] Comer, S. D. Elementary properties of structures of sections. Bol. Soc. Mat. Mexicana 19 (1974), 78-85.
[3] Kreisel, G. and J. L. Krivine. Elements of Mathematical Logic. Amsterdam-London, 1971.
[4] Monk, J. D. A Galois theory for simple extensions of Boolean algebras. Preprint.
[5] Rabin, M. O. Decidable Theories. In: Handbook of Mathematical Logic, 595-629. Amsterdam-New York-Oxford, 1977.
[6] Rubin, M. The theory of Boolean algebras with a distinguished subalgebra is undecidable. Ann. Sci. Univ. Clermont No. 60 (1976), 129-134.
[7] Sikorski, R. Boolean Algebras. 2nd edition, Berlin-Heidelberg-New York, 1964.
[8] Villamayor, O. and D. Zelinsky. Galois theory with infinitely many idempotents. Nagoya Math. Journal 35 (1969), 83-98.
(Reçu le 9 septembre 1980)

Sabine Koppelberg
II. Mathematisches Institut der Freien Universität

Königin-Luise-Str. 24-26
1000 Berlin 33
West Germany

[^0]: * This article has already been published in Logic and Algorithmic, an international Symposium in honour of Ernst Specker, Zürich, February 1980. Monographie de L'Enseignement Mathématique No 30 , Genève 1982.

