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A LINEAR ALGEBRA PROOF OF CLIFFORD'S THEOREM

by W. J. Gordon

One of the central results in the theory of algebraic curves is the

Riemann-Roch theorem. This theorem guarantees that for divisors D of
large degree on a curve the dimension of the associated linear system | D \

and the degree of the divisor differ by a constant, the genus of the curve.
Clifford's theorem complements Riemann-Roch, by giving information about
dim I D I when the degree of D is small.

The standard modern proof of the Riemann-Roch theorem is a cohomo-

logical, scheme-theoretic one. However, elementary proofs are often given
because of the importance of the result in the classical theory of algebraic
curves. In contrast, Clifford's theorem, which complements Riemann-Roch
and provides useful information about hyperelliptic curves, is usually given
only a scheme-theoretic proof, and so is not widely known.

In this paper, I give an elementary proof of Clifford's theorem. First
1 prove a key result, Clifford's lemma, which has the flavor of linear algebra
although it is actually a result in algebraic geometry. Clifford's lemma and the
Riemann-Roch theorem provide an easy proof of the first part of Clifford's
theorem ; the other two parts follow by linear algebra arguments.

The proof of the third part of the theorem depends only on facts about
divisors on hyperelliptic curves. This proof emphasizes the view of a hyperelliptic

curve as a double covering of the projective line. In contrast, the
usual proof relies on the characterization of hyperelliptic curves in terms of
the canonical morphism C Pg^1.

1. The key lemma

For this section, let K be a field and let A, B, and C be vector spaces
over K. Let r, and s, denote the dimensions of the vector spaces A
and B.

Definition. The K-bilinear map cp : A x B —> C is bi-injective if the
induced maps cp(a, : B — C and cp( b) : A — C are injective whenever
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a ^ 0 and b ^ 0. Equivalently, (p is bi-injective if cp(a, b) 0 implies a or b

is zero.
The image of the bi-injective map cp : A x B -> C is not in general a

vector subspace of C, but this image contains an s-dimensional family,
3F {Ab <p(A, b) I b g B}, of r-dimensional vector subspaces of C. Since C

contains this family SF, one would expect that dim C is at least r -b s.

This is not the case at all One has

Clifford's Lemma. Let K be algebraically closed, and let cp: A x B -> C

be bi-injective. Then

dim C ^ r + 5 — 1

Example 1. The lower bound given can occur. For example, let Pn

{polynomials in K[x] °f degree ^ n}. Then multiplication of polynomials
defines a bi-injective map \i : Pr x Ps -+ Pr+S, for which equality holds in
Clifford's Lemma.

Example 2 (Schanuel). If K is not algebraically closed the result is false.

Namely, let F be an extension field of E, of degree n > 1. Then the

multiplication map p : F x F -> F is a bi-injective map of F-vector spaces, yet
Clifford's Lemma would imply

dim F n > 2 dim F — 1 In — 1

(This example shows that the Lemma is not actually a result of linear

algebra.)

Proof of Clifford's Lemma. Assume that dim C t^r + s — 2. Let

{a1,..., ar} be a basis for A, {bl,..., bs} one for B, and {c1,..., ct} one for C.

I will show, that there are elements a e A, b e B both nonzero for which

cp(tf, b) 0. Writing a £ and b £ ß^-, bilinearity shows that
ij

(p(a,b) L^ß/Pij where <Pij <P(ai > bj)
ij k

Then, (p(a, h) 0 if and only if

(*) L aißAV =0 for t.
ij

Since a and b are nonzero, their coordinate tuples (ax,..., ar) and (ßi,..., ßs)

can be viewed as points in the projective spaces Pr-i and Ps_!. The Segré r

embedding a: Pr_! x Ps_x -> Prs_! given by
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a((oci,..., ar), (ßi,ßs)) — (aißi,..., ßißs, o^ßi 5 •••> a2ßs> —5 arßs)

is a projective morphism establishing an isomorphism between Pr_x x Ps_x

and the image Sf cr(Pr_1 x Ps_ 1). [4, Ex 1.2.14] Once I label the

coordinates of Prsl as (zn,..., zls,z21,..., z2s,..., zrs), ¥ can be identified with
the algebraic subset of P„„j cut out by the polynomials

{ztj zpq - ziqzpj I 1 ^ i, p ^ r and 1 ^ j, q < s}

y is an algebraic subvariety of Prs _ x, of dimension r 4- 5 — 2.

In Prs_i we can also consider the algebraic subvariety ZT cut out by the

polynomials fXziAS/l 1 ^ k ^ t}. Since is cut out by £ < r + s — 2
U

equations and dim ^ r + s — 2, ^ and ST have a nonempty intersection,
all of whose components have dimension at least (r + s — 2) — t, which is

^ 0. [4, p. 48] However, any intersection point of and 3T corresponds to a

pair of points (a!,..., ar) e Pr_!, (ßi,..., ßs) ePs_! satisfying (*). The
corresponding points a E afaf e A, b E ß^- e B are nonzero, yet cp(a, 6) 0.

Since this contradicts the bi-injectivity of cp, I have shown that

dim C ^ r + s — 1

The assumption that K is algebraically closed was only needed to
guarantee that Sf f) which by dimension theory corresponds locally to a

proper ideal, was nonempty. Hilbert's Nullstellensaltz shows that any proper
ideal in a polynomial ring over an algebraically closed field cuts out at least
one point.

2. A BRIEF RESUME OF DIVISORS ON CURVES

In this section, I will establish notation for divisors, and state the
Riemann-Roch theorem. Let C be a nonsingular projective algebraic curve
defined over an algebraically closed field K. C is contained in some
projective space P^v over X, and a (closed) point of C is any closed point
(Po>-,Pn) of PN at which all the polynomials cutting out C vanish. The
group of divisors on C is the free abelian group generated by the points
of C. Any divisor can be written in the form

N E nP • P

where the nP are integers, almost all zero. The degree of N is the integer
deg N E nP. The divisor N is effective if all the nP are ^ 0; this is written
as N > 0. I write D >- E to mean D — E > 0.
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To any function f on C one can associate a divisor (/) £ ordP(f) • P,

where ordP(/) is the order of zero or pole of / at P. For any function /,
the divisor (/) has. degree 0. The divisors D, E are linearly equivalent,
denoted by D ~ F, if for some function f D — E (/). To a divisor D

on C one can associate a set of functions on C,

UD) {functions / on C | (/) + D > 0} (J {0}

Then L(D) is a K-vtctor space of dimension 1(D) ; the set | D | {divisors
F ~ D I E > 0} of the divisors - (/) + D corresponding to functions / in
L(D) is the linear system associated to D. If {/0,..., /„} is a basis of

L(D), then | D | can be identified with P„ by associating the divisor

(ao/o + - + fln/n) + D

to the triple (a0,..., an) ; one writes dim | D | for the dimension of this

projective space. To define dim | D | intrinsically, notice that dim | D | ^ r
if and only if, for all points Pr,..., Pr in C, there is a divisor E in | D |

of the form E Px 4- + Pr + ö, with Q effective. Any such divisor E
is necessarily effective and linearly equivalent to D, and has support containing
each Pt. (In fact, since dim | D | ^ r there is a linearly independent set

{fo, -, fr} of functions in L(D). One can choose E of the form E D

+ 0*o/o + - + ar/r) f°r SOme a0> -> UreK.)

If D ~ E, then | D | | E |, so dim | D | dim | E |, and L(D) is

isomorphic to L(P). Since for any function f on C deg (/) 0, also deg D

deg E. In particular,, if deg D < 0 then | D \ is empty, and L(D) (0).

Definition. The curve C admits a grn if there exists a divisor D on C of
degree n, and with dim \ D \ r. We call | D | the grn defined by D.

Notice that if D defines a grn and E ~ Z), then E defines the same gjj.

Yet a curve may admit several distinct g^'s if it contains non-linearly
equivalent divisors all defining gjj's. To explain the notation, assume that

L(D) has basis (f0,..., fr). Then the map

p -, (f0(P),m)
is a rational map from C into Pr, defined except at the common zeros of
all the fi (the "fixed points" of | D |) ; via this map, the pullback of every
hyperplane in Pr is a divisor on C of degree n. [4, II: 7.7 and 7.8.1]

The Riemann-Roch Theorem defines for each curve two invariants—a

nonnegative integer g, the genus, and a divisor JT, the canonical divisor

(determined only up to linear equivalence). [For a modern proof, cf. 4,

Ch. IV. 1 ; an elementary proof is given in 2].
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Theorem (Riemann-Roch). Let C be a projective nonsingular algebraic

curve. The genus of C is a nonnegative integer g. For all divisors D

on C,

dim I D I ^ deg D — g

If the strict inequality holds, D is special. For all special divisors D,

dim I D I deg D + 1 — g + dim | Jf — D \

Corollary, deg Jf 2g — 2 ; dim | JC | g — 1 ; and all divisors D

of degree > 2g — 2 are nonspecial.

3. Clifford's Theorem — The elementary proof

Clifford's Theorem complements Riemann-Roch by providing information
about special divisors, which of necessity are of small degree. The theorem
also gives a sufficient condition that the curve C is hyperelliptic. (The
theorem owes its name to the appearance of its first part in [1].) The

proof I give here is elementary ; more typical modern proofs [e.g. 4, Ch. IV,
section 5 and 3, Ch. 2, section 3] involve considering whether the canonical
morphism C defined by the canonical divisor X is an embedding.

Definition. C is a hyperelliptic curve if its genus g is at least 2, and
if C admits a g\.

Remarks.

1. C is hyperelliptic if and only if there is a rational map C ->
of degree 2.

2. This happens if and only if C has an (affine) equation of the form
y2 /(*).

3. Part (3) of Clifford's Theorem shows that a hyperelliptic curve has a
unique g\. Contrast this to the case of an elliptic curve, where g 1.

Here any divisor of degree 2 defines a g\. Yet choosing distinct points P,
Q one sees easily that the divisors 2P and P + Q are not linearly equivalent,
and so define distinct g | 's.

Theorem (Clifford). Let C be a curve of genus g, and let D be an

j effective special divisor on C. Then
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(1) dim I D I ^ i deg D

(2) Equality holds in only 3 cases : (a) D 0 ; or

(b) D X\or
(c) C is a hyperelliptic curve.

(3) If Case 2c holds then C admits a unique g \, deg D 2r for
some integer r ^ 1, and D ~ r • g\.

Proof of (1). Since D is effective special, the vector spaces L(D) and

L(Jf — D) are both of positive dimension. Define a map p : L(D) x L(Jf — D)

L(JT) by p(/, g) f-g. (Since (/) + D > 0 and (g) + JT - D > 0,

(fg) + JT (/) + (g) + JT [(/) + />] Hb [(^J + jf-D] > 0 so ^ g L(jT).)
This map is bi-injective, so dim L(Jf) ^ dim L(D) + dim L(Jf — D) — 1 by
Clifford's Lemma. Since 1(D) dim | D \ — 1, one has

(1) dim I JC I ^ dim | D | + dim | Jf — D |

On the other hand, Riemann-Roch guarantees that

(2) deg D + 1 — g dim | D | — dim | Jf — D |

Adding these, and recalling that dim \ Jf \ g — 1, one gets deg D

^ 2 dim I D |.

Implicit in the proof is a result I will need later.

Lemma 1. For the effective special divisor D, dim | D \ — deg D if
and only if dim | JC | dim | D | + dim | JT — D |. This holds if and only

if g — 1 ^ dim | D \ + dim | JC — D \. Further, equality holdsfor D ifand

only if it holds for (any effective divisor linearly equivalent to) X — D.

Proof off2). Assume that equality holds, and that D is neither 0 nor Jf.
Notice that if deg D 2, or deg — D 2, then D, or — D, defines a

g 2 and C is hyperelliptic. Thus, I may assume that deg D and deg JT — D

are both at least 4, so dim | D \ and dim | JT — D | are both at least 2. Fix
a point P in C. Since dim | JT — D | ^ 2 I can choose a divisor E — P

+ ZcÄR in I JC — D |. Now fix a point Q on C but not in the support of
E (i.e. eQ 0). Because dim | D | ^ 2 I can choose a divisor (sloppily I call

it D) in I D | whose support contains both P and ß,

D P T ß T *EdftR
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Set I inf (D, E) and S sup (D, E). Then

J I min {dP, eP) • P and S I max (dP, eP) • P

Since P is in I, and ß is not, we have 0 < deg I < deg D. Once I show

that dim | 11 ^ deg /, by descent I will have shown that C is hyperelliptic.

Notice that L(I) L(D) f) L(E). The inclusion L(I) a L(D) P) L(D) holds

because I < D and I < E. On the other hand, if / g L(D) P L(£), (/) + D

and (/) + E are both effective. Then, for all points R, ordR{f) ^ — dR and

ordÄ(/) ^ -eR, so ordÄ(/) + min (dR,eR) ^ 0 and f e L(I). Similarly, one

sees that L(D) + L{E) a L(S). Since D < S and E < S both L(D) and L(E)

are subspaces of L(S). If Ô g L(D) and s g L(E), then for all R, ordK(Ô + s)

> min (ordR(ô), ordÄ(s)) ^ min { — dR, —eR) —max {dR, eR). This shows

that ô + s g L(S).

As subspaces of L(S), we see that

dim L(D) + dim L(E) dim L(I) + dim (L{D) + L(E)).

Rewriting this in terms of linear systems gives

dim I D I + dim | E | ^ dim | I \ + dim | S |

Since E ~ JT — D, Lemma 1 applied to D gives

dim I JT I ^ dim \ I \ + dim | S \

Yet I + S D + E ~ JT, so S ~ JT — I. Lemma 1, now applied to /,

shows that dim | I \ - deg I.

To prove the third part of the theorem I need some technical lemmas.

We may assume that the curve C is hyperelliptic and so comes equipped
with a given g \. On any such curve I can define a function n : C C,

by defining n(P) to be the unique point Q such that P + ß is a divisor in
the given g\. To verify that n(P) is well defined, notice that if P + ß
and P + R both belong to the given g \, then ß ~ R. Since g > 0, ß must
equal R [4, II. 6.10.1]; this shows that k(P) is well-defined. Notice that since
kP + P is in the g \, n(nP) P.

Lemma 2. For any point P, L(jf —P) L{X — P — nP) and l{Jf — P)
1{X) - 1.

Proof. P + k(P) is a g\ so dim | P + nP \ 1 and by Lemma 1,
1 + dim I Jf - P - kP I dim | Jf |. Since Jf-P-nP<Jf-P
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< Jf, one sees that L(jf -P-nP) c= LpC-P) c= L(jf). To prove L(jf -P)
L(Jt — P — nP) it suffices to show that L(JC —P) ^ L(Jf). Yet if these were

equal, the divisor P would be an effective special divisor of degree 1 with
dim I ff — P I dim | X |. By Lemma 1, then dim | P | would equal

- deg P, which is absurd

Definition. The points Pl,..., Pk on C form a disjoint set of points if for
each i, P, ^ ^(P;) and if the divisors Pf + nPt are pairwise disjoint.

Lemma 3. Let {Px,Pn} be a disjoint set of points, with n ^ g.

Then

dim f] LfJf-Pi) l{Jf) - n g - n.
l

Proof Since l(jf — Pt) — 1, the intersection has dimension

^ /(JC) — n. Choose points P„+ x,_..., Pg such that {P1,Pg} is a disjoint set.

Then

{'\UX-P,) n LLX-Pt-nPd +
1 1 1

If dim P) L(Jf — Pf) > /(C/T) — n, then
l

dim LpT-E^-hTTP,)) dim f] L{Jf-Pt) > /pT) - g 0.
i

This shows that there is an effective divisor E ~ JC — E(Pt + 7iPf) ; but this is

impossible since deg (JC — 2(Pt- + nPf) < 0.

Corollary. Let {Px, P3,..., P„} he disjoint. Then

dim (Lpr-2i\) n n U^-Pi))
3

Proof. Since L(JT — 2PX) c= LpT — Px), by the lemma Lpf — 2P1)
n n

P) LpT —P,) is contained in the vector space LpT — PJ P| P) Lpf — P{) of
3 3

dimension g — n + 1.

If these vector spaces were equal, then they would both equal

L(jT-2P1-tiP1) p| n L(jT-P,-tuP,).
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Choosing more points Pn+1,Pg as in the proof of the lemma would give,

similarly,

dim L(jf-2F1-7iF1) f) 0 U^-Pt-^Pd > 1

3

Again, we get a contradiction since this shows that the divisor JC — 2Pi

_ 7lp1 _ of negative degree is linearly equivalent to an effective
3

divisor. ^
Now I can finally prove (3).

Proof of (3). Given an effective special divisor D of degree 2r and with

dim I D I r, choose points P1,Pr forming a disjoint set. Notice that since

2 ^ deg D and 2 ^ deg (Jf-D), then 1 ^ r ^ g - 2. Then there is a divisor,

call it D, in I D I of the form

D Pi + + Pr + A

I claim A rcPi + + nPr. This could fail in two ways.

Case 1 : If A contains some point Q which is not equal to any of

Pr or kP!,..., 7iPr, then L(JC-D)cf] L(Jf-Pt) f) L(JT-Q). Yet
i

/(JT - D) dim I JC — D | + 1 g — r while, by Lemma 3, the intersection

has dimension g — (r -f 1). This shows that Case 1 cannot occur.

Case 2: If A contains some Pt, or contains some nPi twice, (after

interchanging Pt and nPt if necessary and renumbering) we can write

D IP i + P2 + + Pr + B

where B is effective, of degree r — 1. Here, L(Jf — D) cz Lpf — 2Pi) p)
r

P) IfJC — Pi). Again, l(Jf — D) g — r, and by the corollary the dimension
2

of the intersection is g — (r+1). Case 2 cannot occur either.

Thus, D ~ Pi + + Pr + tcPi + + nPr so D — r - g\. In particular,
if D is any divisor on C of degree 2 with dim | D \ 1, D is linearly
equivalent to a divisor in the given g\. Thus a hyperelliptic curve has a

unique g\.

It is interesting to compare the results of Clifford's theorem with those
of the Riemann-Roch theorem, for hyperelliptic curves. Clifford's theorem

shows that any special effective divisor D with dim | D | i deg D is linearly
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equivalent to a multiple of the unique g\. In particular, for the canonical
divisor Jf we have Jf ~ (g — 1) • g \. Conversely, the Riemann-Roch theorem
shows that any divisor D ~ r • g\, -where 1 ^ r < g — 1, satisfies dim | D |

- deg D. To see this, note that the proof of part (3) shows that if

D ~ r • g J I can write

D ~ (P1+nP1) + (P2 + 7tP2) T ••• 4- (Pr-\-TiPr)

for a disjoint set of points {P1,..., Pr}. Then

L(Jf-D) L(JT- f (Pi + nPd) - 0 •

i 1 1

By lemma 3 this set has dimension g — r ; in other words, dim | — D |

g — r — 1 — deg (JT —D). By lemma 1, dim | D | — — deg D.
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