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a((oci,..., ar), (ßi,ßs)) — (aißi,..., ßißs, o^ßi 5 •••> a2ßs> —5 arßs)

is a projective morphism establishing an isomorphism between Pr_x x Ps_x

and the image Sf cr(Pr_1 x Ps_ 1). [4, Ex 1.2.14] Once I label the

coordinates of Prsl as (zn,..., zls,z21,..., z2s,..., zrs), ¥ can be identified with
the algebraic subset of P„„j cut out by the polynomials

{ztj zpq - ziqzpj I 1 ^ i, p ^ r and 1 ^ j, q < s}

y is an algebraic subvariety of Prs _ x, of dimension r 4- 5 — 2.

In Prs_i we can also consider the algebraic subvariety ZT cut out by the

polynomials fXziAS/l 1 ^ k ^ t}. Since is cut out by £ < r + s — 2
U

equations and dim ^ r + s — 2, ^ and ST have a nonempty intersection,
all of whose components have dimension at least (r + s — 2) — t, which is

^ 0. [4, p. 48] However, any intersection point of and 3T corresponds to a

pair of points (a!,..., ar) e Pr_!, (ßi,..., ßs) ePs_! satisfying (*). The
corresponding points a E afaf e A, b E ß^- e B are nonzero, yet cp(a, 6) 0.

Since this contradicts the bi-injectivity of cp, I have shown that

dim C ^ r + s — 1

The assumption that K is algebraically closed was only needed to
guarantee that Sf f) which by dimension theory corresponds locally to a

proper ideal, was nonempty. Hilbert's Nullstellensaltz shows that any proper
ideal in a polynomial ring over an algebraically closed field cuts out at least
one point.

2. A BRIEF RESUME OF DIVISORS ON CURVES

In this section, I will establish notation for divisors, and state the
Riemann-Roch theorem. Let C be a nonsingular projective algebraic curve
defined over an algebraically closed field K. C is contained in some
projective space P^v over X, and a (closed) point of C is any closed point
(Po>-,Pn) of PN at which all the polynomials cutting out C vanish. The
group of divisors on C is the free abelian group generated by the points
of C. Any divisor can be written in the form

N E nP • P

where the nP are integers, almost all zero. The degree of N is the integer
deg N E nP. The divisor N is effective if all the nP are ^ 0; this is written
as N > 0. I write D >- E to mean D — E > 0.
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To any function f on C one can associate a divisor (/) £ ordP(f) • P,

where ordP(/) is the order of zero or pole of / at P. For any function /,
the divisor (/) has. degree 0. The divisors D, E are linearly equivalent,
denoted by D ~ F, if for some function f D — E (/). To a divisor D

on C one can associate a set of functions on C,

UD) {functions / on C | (/) + D > 0} (J {0}

Then L(D) is a K-vtctor space of dimension 1(D) ; the set | D | {divisors
F ~ D I E > 0} of the divisors - (/) + D corresponding to functions / in
L(D) is the linear system associated to D. If {/0,..., /„} is a basis of

L(D), then | D | can be identified with P„ by associating the divisor

(ao/o + - + fln/n) + D

to the triple (a0,..., an) ; one writes dim | D | for the dimension of this

projective space. To define dim | D | intrinsically, notice that dim | D | ^ r
if and only if, for all points Pr,..., Pr in C, there is a divisor E in | D |

of the form E Px 4- + Pr + ö, with Q effective. Any such divisor E
is necessarily effective and linearly equivalent to D, and has support containing
each Pt. (In fact, since dim | D | ^ r there is a linearly independent set

{fo, -, fr} of functions in L(D). One can choose E of the form E D

+ 0*o/o + - + ar/r) f°r SOme a0> -> UreK.)

If D ~ E, then | D | | E |, so dim | D | dim | E |, and L(D) is

isomorphic to L(P). Since for any function f on C deg (/) 0, also deg D

deg E. In particular,, if deg D < 0 then | D \ is empty, and L(D) (0).

Definition. The curve C admits a grn if there exists a divisor D on C of
degree n, and with dim \ D \ r. We call | D | the grn defined by D.

Notice that if D defines a grn and E ~ Z), then E defines the same gjj.

Yet a curve may admit several distinct g^'s if it contains non-linearly
equivalent divisors all defining gjj's. To explain the notation, assume that

L(D) has basis (f0,..., fr). Then the map

p -, (f0(P),m)
is a rational map from C into Pr, defined except at the common zeros of
all the fi (the "fixed points" of | D |) ; via this map, the pullback of every
hyperplane in Pr is a divisor on C of degree n. [4, II: 7.7 and 7.8.1]

The Riemann-Roch Theorem defines for each curve two invariants—a

nonnegative integer g, the genus, and a divisor JT, the canonical divisor

(determined only up to linear equivalence). [For a modern proof, cf. 4,

Ch. IV. 1 ; an elementary proof is given in 2].
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Theorem (Riemann-Roch). Let C be a projective nonsingular algebraic

curve. The genus of C is a nonnegative integer g. For all divisors D

on C,

dim I D I ^ deg D — g

If the strict inequality holds, D is special. For all special divisors D,

dim I D I deg D + 1 — g + dim | Jf — D \

Corollary, deg Jf 2g — 2 ; dim | JC | g — 1 ; and all divisors D

of degree > 2g — 2 are nonspecial.

3. Clifford's Theorem — The elementary proof

Clifford's Theorem complements Riemann-Roch by providing information
about special divisors, which of necessity are of small degree. The theorem
also gives a sufficient condition that the curve C is hyperelliptic. (The
theorem owes its name to the appearance of its first part in [1].) The

proof I give here is elementary ; more typical modern proofs [e.g. 4, Ch. IV,
section 5 and 3, Ch. 2, section 3] involve considering whether the canonical
morphism C defined by the canonical divisor X is an embedding.

Definition. C is a hyperelliptic curve if its genus g is at least 2, and
if C admits a g\.

Remarks.

1. C is hyperelliptic if and only if there is a rational map C ->
of degree 2.

2. This happens if and only if C has an (affine) equation of the form
y2 /(*).

3. Part (3) of Clifford's Theorem shows that a hyperelliptic curve has a
unique g\. Contrast this to the case of an elliptic curve, where g 1.

Here any divisor of degree 2 defines a g\. Yet choosing distinct points P,
Q one sees easily that the divisors 2P and P + Q are not linearly equivalent,
and so define distinct g | 's.

Theorem (Clifford). Let C be a curve of genus g, and let D be an

j effective special divisor on C. Then
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