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Theorem (Riemann-Roch). Let C be a projective nonsingular algebraic

curve. The genus of C is a nonnegative integer g. For all divisors D

on C,

dim I D I ^ deg D — g

If the strict inequality holds, D is special. For all special divisors D,

dim I D I deg D + 1 — g + dim | Jf — D \

Corollary, deg Jf 2g — 2 ; dim | JC | g — 1 ; and all divisors D

of degree > 2g — 2 are nonspecial.

3. Clifford's Theorem — The elementary proof

Clifford's Theorem complements Riemann-Roch by providing information
about special divisors, which of necessity are of small degree. The theorem
also gives a sufficient condition that the curve C is hyperelliptic. (The
theorem owes its name to the appearance of its first part in [1].) The

proof I give here is elementary ; more typical modern proofs [e.g. 4, Ch. IV,
section 5 and 3, Ch. 2, section 3] involve considering whether the canonical
morphism C defined by the canonical divisor X is an embedding.

Definition. C is a hyperelliptic curve if its genus g is at least 2, and
if C admits a g\.

Remarks.

1. C is hyperelliptic if and only if there is a rational map C ->
of degree 2.

2. This happens if and only if C has an (affine) equation of the form
y2 /(*).

3. Part (3) of Clifford's Theorem shows that a hyperelliptic curve has a
unique g\. Contrast this to the case of an elliptic curve, where g 1.

Here any divisor of degree 2 defines a g\. Yet choosing distinct points P,
Q one sees easily that the divisors 2P and P + Q are not linearly equivalent,
and so define distinct g | 's.

Theorem (Clifford). Let C be a curve of genus g, and let D be an

j effective special divisor on C. Then
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(1) dim I D I ^ i deg D

(2) Equality holds in only 3 cases : (a) D 0 ; or

(b) D X\or
(c) C is a hyperelliptic curve.

(3) If Case 2c holds then C admits a unique g \, deg D 2r for
some integer r ^ 1, and D ~ r • g\.

Proof of (1). Since D is effective special, the vector spaces L(D) and

L(Jf — D) are both of positive dimension. Define a map p : L(D) x L(Jf — D)

L(JT) by p(/, g) f-g. (Since (/) + D > 0 and (g) + JT - D > 0,

(fg) + JT (/) + (g) + JT [(/) + />] Hb [(^J + jf-D] > 0 so ^ g L(jT).)
This map is bi-injective, so dim L(Jf) ^ dim L(D) + dim L(Jf — D) — 1 by
Clifford's Lemma. Since 1(D) dim | D \ — 1, one has

(1) dim I JC I ^ dim | D | + dim | Jf — D |

On the other hand, Riemann-Roch guarantees that

(2) deg D + 1 — g dim | D | — dim | Jf — D |

Adding these, and recalling that dim \ Jf \ g — 1, one gets deg D

^ 2 dim I D |.

Implicit in the proof is a result I will need later.

Lemma 1. For the effective special divisor D, dim | D \ — deg D if
and only if dim | JC | dim | D | + dim | JT — D |. This holds if and only

if g — 1 ^ dim | D \ + dim | JC — D \. Further, equality holdsfor D ifand

only if it holds for (any effective divisor linearly equivalent to) X — D.

Proof off2). Assume that equality holds, and that D is neither 0 nor Jf.
Notice that if deg D 2, or deg — D 2, then D, or — D, defines a

g 2 and C is hyperelliptic. Thus, I may assume that deg D and deg JT — D

are both at least 4, so dim | D \ and dim | JT — D | are both at least 2. Fix
a point P in C. Since dim | JT — D | ^ 2 I can choose a divisor E — P

+ ZcÄR in I JC — D |. Now fix a point Q on C but not in the support of
E (i.e. eQ 0). Because dim | D | ^ 2 I can choose a divisor (sloppily I call

it D) in I D | whose support contains both P and ß,

D P T ß T *EdftR



Clifford's theorem 91

Set I inf (D, E) and S sup (D, E). Then

J I min {dP, eP) • P and S I max (dP, eP) • P

Since P is in I, and ß is not, we have 0 < deg I < deg D. Once I show

that dim | 11 ^ deg /, by descent I will have shown that C is hyperelliptic.

Notice that L(I) L(D) f) L(E). The inclusion L(I) a L(D) P) L(D) holds

because I < D and I < E. On the other hand, if / g L(D) P L(£), (/) + D

and (/) + E are both effective. Then, for all points R, ordR{f) ^ — dR and

ordÄ(/) ^ -eR, so ordÄ(/) + min (dR,eR) ^ 0 and f e L(I). Similarly, one

sees that L(D) + L{E) a L(S). Since D < S and E < S both L(D) and L(E)

are subspaces of L(S). If Ô g L(D) and s g L(E), then for all R, ordK(Ô + s)

> min (ordR(ô), ordÄ(s)) ^ min { — dR, —eR) —max {dR, eR). This shows

that ô + s g L(S).

As subspaces of L(S), we see that

dim L(D) + dim L(E) dim L(I) + dim (L{D) + L(E)).

Rewriting this in terms of linear systems gives

dim I D I + dim | E | ^ dim | I \ + dim | S |

Since E ~ JT — D, Lemma 1 applied to D gives

dim I JT I ^ dim \ I \ + dim | S \

Yet I + S D + E ~ JT, so S ~ JT — I. Lemma 1, now applied to /,

shows that dim | I \ - deg I.

To prove the third part of the theorem I need some technical lemmas.

We may assume that the curve C is hyperelliptic and so comes equipped
with a given g \. On any such curve I can define a function n : C C,

by defining n(P) to be the unique point Q such that P + ß is a divisor in
the given g\. To verify that n(P) is well defined, notice that if P + ß
and P + R both belong to the given g \, then ß ~ R. Since g > 0, ß must
equal R [4, II. 6.10.1]; this shows that k(P) is well-defined. Notice that since
kP + P is in the g \, n(nP) P.

Lemma 2. For any point P, L(jf —P) L{X — P — nP) and l{Jf — P)
1{X) - 1.

Proof. P + k(P) is a g\ so dim | P + nP \ 1 and by Lemma 1,
1 + dim I Jf - P - kP I dim | Jf |. Since Jf-P-nP<Jf-P
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< Jf, one sees that L(jf -P-nP) c= LpC-P) c= L(jf). To prove L(jf -P)
L(Jt — P — nP) it suffices to show that L(JC —P) ^ L(Jf). Yet if these were

equal, the divisor P would be an effective special divisor of degree 1 with
dim I ff — P I dim | X |. By Lemma 1, then dim | P | would equal

- deg P, which is absurd

Definition. The points Pl,..., Pk on C form a disjoint set of points if for
each i, P, ^ ^(P;) and if the divisors Pf + nPt are pairwise disjoint.

Lemma 3. Let {Px,Pn} be a disjoint set of points, with n ^ g.

Then

dim f] LfJf-Pi) l{Jf) - n g - n.
l

Proof Since l(jf — Pt) — 1, the intersection has dimension

^ /(JC) — n. Choose points P„+ x,_..., Pg such that {P1,Pg} is a disjoint set.

Then

{'\UX-P,) n LLX-Pt-nPd +
1 1 1

If dim P) L(Jf — Pf) > /(C/T) — n, then
l

dim LpT-E^-hTTP,)) dim f] L{Jf-Pt) > /pT) - g 0.
i

This shows that there is an effective divisor E ~ JC — E(Pt + 7iPf) ; but this is

impossible since deg (JC — 2(Pt- + nPf) < 0.

Corollary. Let {Px, P3,..., P„} he disjoint. Then

dim (Lpr-2i\) n n U^-Pi))
3

Proof. Since L(JT — 2PX) c= LpT — Px), by the lemma Lpf — 2P1)
n n

P) LpT —P,) is contained in the vector space LpT — PJ P| P) Lpf — P{) of
3 3

dimension g — n + 1.

If these vector spaces were equal, then they would both equal

L(jT-2P1-tiP1) p| n L(jT-P,-tuP,).
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Choosing more points Pn+1,Pg as in the proof of the lemma would give,

similarly,

dim L(jf-2F1-7iF1) f) 0 U^-Pt-^Pd > 1

3

Again, we get a contradiction since this shows that the divisor JC — 2Pi

_ 7lp1 _ of negative degree is linearly equivalent to an effective
3

divisor. ^
Now I can finally prove (3).

Proof of (3). Given an effective special divisor D of degree 2r and with

dim I D I r, choose points P1,Pr forming a disjoint set. Notice that since

2 ^ deg D and 2 ^ deg (Jf-D), then 1 ^ r ^ g - 2. Then there is a divisor,

call it D, in I D I of the form

D Pi + + Pr + A

I claim A rcPi + + nPr. This could fail in two ways.

Case 1 : If A contains some point Q which is not equal to any of

Pr or kP!,..., 7iPr, then L(JC-D)cf] L(Jf-Pt) f) L(JT-Q). Yet
i

/(JT - D) dim I JC — D | + 1 g — r while, by Lemma 3, the intersection

has dimension g — (r -f 1). This shows that Case 1 cannot occur.

Case 2: If A contains some Pt, or contains some nPi twice, (after

interchanging Pt and nPt if necessary and renumbering) we can write

D IP i + P2 + + Pr + B

where B is effective, of degree r — 1. Here, L(Jf — D) cz Lpf — 2Pi) p)
r

P) IfJC — Pi). Again, l(Jf — D) g — r, and by the corollary the dimension
2

of the intersection is g — (r+1). Case 2 cannot occur either.

Thus, D ~ Pi + + Pr + tcPi + + nPr so D — r - g\. In particular,
if D is any divisor on C of degree 2 with dim | D \ 1, D is linearly
equivalent to a divisor in the given g\. Thus a hyperelliptic curve has a

unique g\.

It is interesting to compare the results of Clifford's theorem with those
of the Riemann-Roch theorem, for hyperelliptic curves. Clifford's theorem

shows that any special effective divisor D with dim | D | i deg D is linearly
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equivalent to a multiple of the unique g\. In particular, for the canonical
divisor Jf we have Jf ~ (g — 1) • g \. Conversely, the Riemann-Roch theorem
shows that any divisor D ~ r • g\, -where 1 ^ r < g — 1, satisfies dim | D |

- deg D. To see this, note that the proof of part (3) shows that if

D ~ r • g J I can write

D ~ (P1+nP1) + (P2 + 7tP2) T ••• 4- (Pr-\-TiPr)

for a disjoint set of points {P1,..., Pr}. Then

L(Jf-D) L(JT- f (Pi + nPd) - 0 •

i 1 1

By lemma 3 this set has dimension g — r ; in other words, dim | — D |

g — r — 1 — deg (JT —D). By lemma 1, dim | D | — — deg D.
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