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FLAT MANIFOLDS WITH Z/p2 HOLONOMY

by Howard Hiller *)

By a flat manifold X we will always mean a compact, connected

Riemannian manifold of constant curvature zero. Each such space X arises

as a quotient En/T where En is n-dimensional Euclidean space and

T 7^(20 is a discrete group of isometries acting freely on En, (so X is

also called locally Euclidean or a Euclidean space form). The group T

fits into a short exact sequence :

(0.1) 0-+M->r^H^l
where H is the finite holonomy group of X acting faithfully on a free

abelian group M of rank n. Furthermore, if N denotes the normalizer of H
in Aut(M) GLn(Z), then the affine diffeomorphism class of X corresponds

precisely to an orbit of N on the "special" classes of H2(H, M) (see definition

preceeding 2.6). Following Charlap [4], we call X an H-manifold.
Charlap [4] has given a complete classification of Z/p-manifolds, p a

prime number. His results rely on Reiner's description [10] of the integral
representation theory of prime order groups.

The success of the classification in this special case depends, in part,
on the following result.

Theorem (A. Jones [9]). A finite group H admits finitely many
isomorphism classes of indecomposable integral representations (i.e. is of finite
representation type] if and only if all Sylow p-subgroups of H are cyclic
of order p or p2.

This result suggests the naturality of generalizing Charlap's classification
to Z/p2-manifolds. In particular, such a classification would contribute to the
study of JT-manifolds, H cyclic of cube-free order, by using appropriate
induction techniques.

*) Partially supported by the National Science Foundation under Grant
MOS-83-01132.
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The case H Z/p2 differs fundamentally from that of H Z/p in that

the number of genera of indecomposable Z/p2-lattices is a function of p

(in fact, 4p+l) while there are 3 genera of indecomposable Z/p-lattices, for

any prime p. Furthermore it is no longer the case that only the trivial
representation admits non-trivial (and "special") two-dimensional cohomology
classes. Eventually we restrict to the case p 2 where there are 9 genera

(originally described by Roiter [14] correcting a mistake in Diederichsen [6])
and 3 of these admit special classes. The assumption p 2 also insures

that the genera are identical to the isomorphism classes so there are no

further invariants to consider. This follows from work of Reiner [13] and

the fact that Z[e27U/m] is a unique factorization domain for m 2,4.

As the smallest dimension of a Z/p2-manifold is p2 — p + 1 (this is a

special case of results from [8]) only the case p 2 produces flat manifolds

of dimension 5, the smallest dimension for which one lacks a complete

classification. We show that there are at least 16 5-dimensional flat

manifolds with holonomy Z/4 and give a general lower bound for any

dimension.
The main ingredient for these results is the work of Heller and Reiner [7]

on the integral representation theory of Z/p2, reviewed in section 1. In

section 2 we study the cohomology of the indécomposables, compute their

restrictions to the subgroup of order p and identify the "special" classes.

Finally in section 3 we restrict to the case p 2 and study the class of

Z/4-manifolds.
It is hoped that this example of holonomy classification will succeed

in exposing the role played by integral representation theory and cohomology

of groups in understanding the structure of flat Riemannian manifolds.

It is a pleasure to thank I. Reiner for helpful correspondence concerning

integral representation theory.

§ 1. Genera of Z/p2-lattices

We begin by briefly reviewing the language and philosophy of the

integral representation theory of finite groups (see [5], [11]). We then give

Heller and Reiner's description [7] of the genera of Z/p2 lattices as

extensions.

Suppose A is a Z-order in a Q-algebra A. A A-lattice is a left A-

module that is also a free abelian group of finite rank. The basic problem
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of integral representation theory is the classification of such A-lattices,

A fixed. The Z-orders that we will need are group rings of finite groups

ZG c= QG and rings of algebraic integers (9K in an algebraic number field K.

We sometimes refer to a ZG-lattice as a G-lattice.

Let Zp (resp. Qp) denote the p-adic completion of Z (resp. Q). It is

easy to see that \p Zp ® A is a Zp-order in the Qp-algebra Ap. Furthermore,

any A-lattice M yields a Ap-lattice Mp Zp ® M. One says that M
and M' are locally isomorphic (or in the same genus) if Mp M'p as

Ap-modules for all primes p.

The classification of A-lattices is often attacked by a "local-to-global"
approach. By this we mean the solution of the following two problems:

1. (local) Determine a complete set of invariants of the genus of a

A-lattice.

2. (global) Determine a complete set of invariants of the isomorphism
class of A-lattice within a fixed genus.

This approach has been very successful and the examples below illustrate it.
We introduce some notation. Let co (resp. Q denote a primitive p2

(resp. pth) root of unity and let R1 Z[Ç], R2 Z[co]. We also let

Aj Z[Z/pf]. The classification of lattices over a ring of algebraic integers,
or more generally a Dedekind domain is classic, and is a good example
of the local-to-global approach.

(1.1) Theorem (Steinitz). If R is a Dedekind domain, every R-lattice
is a direct sum of non-zero ideals of R. The genus of an R-lattice is

determined by the number of non-zero ideals occurring, its rank. The

isomorphism class of the R-lattice within the genus is determined by the ideal
class of the product of the ideals as an element of the ideal class group of
R the Steinitz class of the lattice).

The classification problem for Z/p-lattices was solved by Diederichsen [6]
and Reiner [10]. Again the local-to-global approach is useful.

If a denotes a non-zero ideal of R1 let E(a) denote the non-split
extension of a by the trivial lattice Z. The genus of a (resp. E(a)) is
denoted a (resp. ß). Every Z/p-lattice M can be written :

M Z<a> ©£>=i a,. ©E;=i £(„;).
The genus of the Z/p-lattice M is determined by the multiplicities a, b, c
of the three indecomposable genera 1, a, ß. The isomorphism class of the
lattice within its genus is completely determined by the ideal class
Il i ai' n i ai in c'ass group of
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The solution of the (local) classification problem for R2 Z[co] (a

Dedekind domain) and A: Z[Z/p] can be combined to classify genera of

Z/p2-lattices. The technique used is essentially homological. If M is a

Z/p2-lattice, we let L {xeM:(xp — 1)M 0}. L is a Z/p-lattice and fits

into a Z/p2-exact sequence

0-+L-*M-+N-*0
where N is an R2-lattice. Hence one is reduced to classifying extensions of

jR2-lattices by Z/p-lattices using homological methods. It is not difficult
to show (see [13, p. 478]) that Ext2(R2, L) L/pL, where L is an arbitrary
Z/p-lattice. In fact, if a g L/pL then the corresponding extension is given

by the pushout diagram :

0 -»• (p2A2 -» A2 - K2 - 0

(1.2) I II

0 -> L -»• M -> R2 -> 0

where cp2 is the cyclotomic polynomial 1 + xp + x2p -f + x{p~1)p and the

map a is (by abuse of language) the map that sends cp2 to a. We write

(L, a) for this extension. The final result is :

(1.3) Theorem (Heller and Reiner [7]). There are 4p + 1 genera of
indecomposable Z/p2-lattices given by:

M1 Z,
M2 R19

M3 R2,

M4 A1

M5 (Z, 1),

M6(/c) (Ä! ~kk)

m#) (z®Ai.iex*),
M8(k)

Mg(k)(Z©*!,!®**),

0 ^ k ^ p — 1

1 < fc < p - 2,
0 ^ k ^ p — 2,
0 ^ /c ^ p - 2,

w/iere X (1 — x), Z[x]/(xp—1) and we t;iew Rx as a quotient

of A,.
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The splintering of these genera into isomorphism classes has been

analyzed by Reiner [13]. One can, of course, replace Rl7 R2 by ideal
classes in these rings and A1 by E(a) (cf. section 1) where a is an ideal

class in Rx. There is an additional invariant lying in a quotient of the

group of units of a certain finite ring and, if p 1 (mod 4) a certain

quadratic residue character mod p can also appear as an invariant. The

precise result is Theorem 7.3 of [13]. We will require only the observation
[13, p. 494] that if p 2, 3 there are no further invariants, i.e. each genus
of an indecomposable is a single isomorphism class. In the case p 5

already, although the class number of Q(e2m/m) is one for m 5, 25, the
21 genera of indécomposables split up into 40 isomorphism classes. Hence
already the further isomorphism invariants mentioned above exert an
influence.

§ 2. COHOMOLOGY, RESTRICTIONS AND SPECIAL CLASSES

If H is a finite group, M an //-lattice then: //'(//, M) ®p Hl(H, Mp),
where p ranges over the primes dividing the order of H [3, p. 84].
Hence if M and M' are locally isomorphic, H\H, M) H\H, M') ; so the
cohomology of an //-lattice depends only on its genus.

We recall the cohomology of a cyclic group Z/n <a> [3, p. 58].
We write N 1 + a + a"-1 and D 1 - a. If M is a Z/n-module, then

H°(Z/n, M) Ma

H2i'1(Z/n, M) nM/D • M
H2i(Z/n, M) M°/N • M

for all i ^ 1, where MCT denotes a-invariants and NM {x s M : Nx 0}.
From these remarks it is easy to compute the cohomology of the
indecomposable Z/p-lattices described in section 1.

(2.1) Proposition. The following table describes the cohomology of the
indecomposable Zip-lattices :

M rank H° H1 H2

1 1 Z 0 z/p
a P- 1 0 Z/p 0

ß P z 0 0
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Similarly one can easily compute the cohomology and restriction of the

first four Z/p2-lattices of (1.3).

(2.2) Proposition. If \_M~\p denotes the restriction of the Z/p2-lattice
M to the subgroup of order p, we have the following table.

M rank H° H1 H2 [M]p

Mx 1 1 Z 0 Z/p2 1

M2 R, p - 1 0 Z/p 0 (p-l)l
m3 r2 P2 - P 0 Z/p 0 pa

M4 Ai P z 0 Z/p Pi

Furthermore, A2 Z[Z/p2], the regular representation of Z/p2, satisfies

H° Z, H1 0 H2 and [A2]ß pß.

Proof It suffices to observe that M2 p*(a) and M4 p*(ß), where

p : Z/p2 - Z/p is the natural projection, and M3 fits into a short exact

sequence :

0 - M4 - A2 M3 0.

The last remark follows from the freeness of A2.
To complete the table for the modules Mi9i > 5, we have the following

lemma :

(2.3) Lemma. If L is a Z/p-lattice, a e L, then the extension

M (L, a) defined by (1.2) satisfies :

H\C \ M) coker(x* : H2(C ; cp2A2) H2{C ; L))

w/iprp C is pit/ipr Z/p2 or Z/p.

Proo/ The diagram (1.2) induces

H\C,R2)^ H2(C, cp2A2) 0

4 4 x*

-> H\C,R2)-f H2(C, L) - H2(C, M) -* 0

where the zeros follow from (2.2). An easy diagram-chase completes the proof.
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(2.4) Proposition. The following table describes the cohomology of the

indecomposable Z/p2-lattices Mi9 i > 5:

M rank H° H1 H2

Ms P2 - P + 1 Z 0 Z/p

M6(0) P2 Z 0 0

M6(/C) P2 z Z/p Z/p

M#) p2 + 1 z © z 0 z/p © Z/p

M8(0) P2- 1 0 z/p2 0

M8(/C) P2 - 1 0 Z/p © Tip 0

M9(/c) P2 z Z/p Z/p

Proof Since

H°(Z/p2 ; R2) 0, H°(Z/p2 ; (L, x)) H°(Z/p2 ; L)

and these can be read off from (2.2). The groups H2 are computed by

(2.3). We work out one example in detail. Consider M6(/c), 0 < k ^ p — 1,

so that L A1. If we identify (p2A2 with A1 then the generator:

1 -f x -f + xp 1
g H2(Z/p2, cp2A2)

is sent by \k^, 1 < k ^ p — 1, to

(l-x)k(l + x + + xp_1) (l-x)'"1 -0 0

in H2(Z/p2; A J. If k 0, then the map is an isomorphism. Hence

H2{Z/p2 ; M6(0)) 0 and H2(Z/p2, M6{kj) Z/p, k > 1.

The groups H1(Mi) can be read off the long exact cohomology sequence
of the bottom row of (1.2).

Remark. It follows from (2.2) that M6(0) is the genus of the regular
representation.

We now record the restrictions of the modules Mf to the subgroup of
order p.
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(2.5) Proposition. The Z/p-cohomology and the

Mi, i ^ 5, are given by:
restrictions of

M H2(Z/p;[M]p) Mp

M5 0 (p-l)oc + ß

M6(k) k{Z/p) kl + ka + (p-lc)ß
M7(fc) (k +1) (Z/p) (k +1)1 + koc + (p - fc)ß

M8(/c) k(Z/p) /cl + (/c+l)a + (p — k— l)ß
Mg(k) (k + 1) (Z/p) (/c T1)1 + (/c+l)oc + (p — k — l)ß

0 ^ k ^ p — 1

1 ^ k ^ p — 2

0 ^ k ^ p — 2

0 ^ k ^ p — 2

Proo/ One begins by computing H2(Z/p, [M]p), from (2.3). We work

out an example again with M M6(k). We will need these details later.

The map

P(Z/p) H2(Z/p, A,) "4 H2(Z/p; A,) p(Z/p)

sends the generator x7, 0 ^ j ^ p — 1, from the left-hand side to xJ(l — x)k.

The resulting matrix Cpk in GLp(Z/p) can be described in the following

way. If p > k, let Cp k j denote a column p-vector whose entries are the

coefficients of (1 — x)k introduced "cyclically" starting in row j. For example:

^5, 2, 4

1

0

0

1

-2

We define Cp,k to be the p x p

matrix whose /h column is Cp> K j. So, for example,

1 0 0 1 -2
-2 1 0 0 1

£5,2 — 1 -2 1 0 0

0 1 -2 1 0

0 0 1 -2 1

It is a consequence of the identity (1 -x)fe + 1
(1 -x)(l-

Cp,k+ 1 Cp.i Cp,k

so we get :
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CkPtl -1 1

-1

It is easy to see that Cpl(p(Z/p)) {x e p(Z/p): Yj^o %i ^}* Hence

rank (CPtk) p - k and dimz/pH2(Z/p; M6{kj) p — (p — k) k, as

claimed. The other cases are similar.

Now from (2.1) we see that the Z/p-dimension of H2 is the multiplicity
of 1 in [M~\p. The multiplicities of a and ß are then determined by the

bottom row of (1.2) restricted to the subgroup of order p.

Recall from Charlap [4] that a cohomology class a e H2(H, M) is called

special if i * (a) # 0 for the inclusion i: C - H of any cyclic subgroup.
The basic result is (see [4, p. 22]).

(2.6) Proposition. The extension T in (0, 1) corresponding to

a e H2(H, M) is torsion-free (i.e. the fundamental group of a flat manifold)

if and only if a is special.

It remains to determine which indécomposables in (1.3) admit special
classes. The result is :

(2.7) Proposition. There are 2p — 1 genera of indecomposable Z/p2-
lattices that admit special classes. They are M1, M4, M7(lc), 1 ^ k ^ p — 2,

and Mg(k), 0 ^ k ^ p — 2.

Proof. From (2.2), (2.4) and (2.5) one sees that the given lattices along
with M6(k), 1 ^ k < p — 2, are the only possibilities. We must determine
the restriction map

i*(M) : H2(Z/p2; M) -+ H2(Z/p ; M)

in these cases. Clearly for M M1, i*(M) is the natural projection and for
M M4, i*(M) is the diagonal embedding.

Now suppose M M6(k). We have a commutative diagram of exact
sequences from (1.2) and (2.3)
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tf2(Z/p;<p2A2)

H2(Z/p2; A,)

| A i*(A 1^

'4 H^Z/piAJ

H2(Z/p2;M) - 0

| i*(M)

H2(Z/p; M) - 0

where A is the diagonal map Zp -> p(Z/p). Hence to eliminate M6(/c),

it suffices to show Im(A) c Im^*). Let e denote a column p-vector
consisting of all l's, according to the proof of (2.5) we must find an

xk, 1 ^ k ^ p — 1 so that Cp k-xk CkPtl • xk e. We do this inductively

1

2

on k. For example, xt -, as can easily be checked. Inductively we

define

**(0

i 1

Xk(/-1) + z > 1

Clearly Cp t
• xk xk_i, for all coordinates except possibly the first; we

must show xk(p) 0 (mod p). But a comparison of the xks with Pascal's

triangle convinces one that

xk{p)
p— 1 + k

p-l
k-l\ 1

p-lj \0
0 (mod p),

since k — 1 < p — 1.

We leave it for the reader to check that the restriction maps for

M7(k) and M9(k) are non-trivial.

§ 3. Z/4-MANIFOLDS

In this section, we consider the case p 2. For convenience, we change

the notation slightly and write M7 for M6( 1) and Mf for Mf(0), i 6, 8, 9.

According to (2.7), the indecomposable Z/4-lattices that carry special classes

are Mx, M4 and M9. It is easy to see Mt is faithful if and only if
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i 3, 5, 6, 7, 8, 9. Hence if M is an arbitrary Z/4-lattice then M
is a faithful representation carrying a special class if and only if the

multiplicities mt satisfy the inequalities :

(3.0)

m1 + m4 + m9 > 0

m3 + m5 + m6 + m7 + m8 + m9 > 0

Since the multiplicities are a complete set of isomorphism invariants in
the case p 2 (see section 1) one can use the conditions (3.0) to show:

(3.1) Theorem. If Ln(m) denotes the number of isomorphism classes of
n-dimensional Z/m-lattices that carry special classes, then :

l,(4) L;:
n - 1

2 \°J -1+1^+2^-^-1-1)
+ Z"=[t]4 (flJ—aj-2-0/-4 + a/-6)

where [/c]p denotes the reduction of k modulo p, [/c] denote the largest
integer ^ k and the a- s are given by

m ^0ajf
1

(1 — £) (1 — t2)2 (1 — t3)2 (1 — t4)3

In particular, the number of n-dimensional Z/4-manifolds is at least L„(4).

Proof If Q(t) is a power series, let coef(n, Q(t)) denote the coefficient
of tn in Q(t). The number Ln(4) counts the number of ways of writing

n m1 + m2 + 2(m3 + m4) + 3 (m5 + m8) + 4(m6 + m7 + m9)

where the m- s satisfy (3.0). If ml > 0 there is a contribution:

n — mi
El1 1 coef(n-mi,P(t)) - + 1

where
n — m i

+ 1 is the number of ways of expressing n — m1 as a

combination of l's (M2) and 2's (M4) (not permitted by (3.0)). Reindexing
gives the first term for Ln(4).

Similarly, if m1 0, m4 > 0 there is a contribution:

coef(tn ~ 2m4( 1 — t)P(t)) - 1
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where 1 is subtracted to omit choosing m2 alone. Finally, if ml m4 0,

we have :

The coefficients of (1 — r)P(r) and 1 — t2 — r4 — t6)P(t) are easily expressible in

terms of the a-s and the result follows.

Remark. In order for a Z/p-lattice to carry a special class, the multiplicity
of the trivial representation must be non-zero. Topologically this is reflected

in the fact that a Z p-manifold fibers over a circle. This is already false

for a 4-dimensional Z 4-manifold as the following example shows.

Example. L4(4) 6. The multiplicities of the indécomposables in these

4-dimensional Z 4-lattices are given by:

notation of [2] ml m2 m5 m4 m5 m6 m7 m8 m9

where the first column gives the label of these "Z-classes" from the table

of the four-dimensional crystallographic groups in [2]. In fact, as these

tables indicate, there is precisely one Z/4-manifold corresponding to each

Z/4-lattice, hence there are exactly 6 4-dimensional Z/4-manifolds.

Remark. Recall that if p < 23, the field Q(e2ni/P) has class number one.

This fact, along with the work of Charlap [4], shows that the number of

n-dimensional Z/p-manifolds is exactly Ln(p), p < 23. This number is readily

computable, as Charlap [4, p. 30] remarks, and the precise formula is:

coefitr" "4m9, 1 -12) 1 - f4)P(f)).

07 02 02

12 01 04

12 01 02

07 02 01

12 01 03

12/01/06

i

(3.2) Up) p-i
j

where <k> denotes the smallest integer ^ k. In particular, Lp(p) 1,

Ln(p) 0, p > n, and when p 2



FLAT MANIFOLDS 295

2 AA M 2n\ n\ 1 L"j2
I» +y-i+T-
using the notation of (3.1).

One can easily construct the following table of values of Ln(p):

n 2 3 4 5 6

p
2 1 3 5 8 11

3 1 2 3 4

5 1 2

Hence 14 of the 74 4-dimensional flat manifolds have cyclic holonomy

^ 5. (Furthermore, 26 have holonomy the Klein 4-group.) We describe

analogous facts in dimension 5 below.

We let SH2(H, M) denote the set of special classes in H2(H, M). If
H is a cyclic p-group and i : Zp c+ H is the inclusion of the subgroup
of order p, then

SH2(H, M) H2(H, M) - ker(i*).

If N (resp. Z) denotes the normalizer (resp. the centralizer) of H in
Aut(M), there is an exact sequence (see [15, p. 50])

0 - Z - N -> Aut(if).

We conjecture :

Conjecture. If Z[e2nl/pk] is a unique factorization domain for,

U U n, then N acts transitively on SH2(Z/pn\ M) for any H-lattice M.
The case n 1 of the Conjecture follows from Charlap [4]. Class number

tables shows that the n 2 case applies to p 2, 3, 5, the n 3 case to
2, 3 and the n 4 case to p 2. This conjecture implies that the lower
bound of (3.1) is exact.

We mention that the multiplicities of the indécomposables in the
5-dimensional Z/4-lattices that admit special classes are given by :



296 H. HILLER

m1 m2 m3 m4 m5 m6 m7 m8 m9

Those lattices that are starred clearly satisfy the Conjecture.
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