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284 H. HILLER

The case H Z/p2 differs fundamentally from that of H Z/p in that

the number of genera of indecomposable Z/p2-lattices is a function of p

(in fact, 4p+l) while there are 3 genera of indecomposable Z/p-lattices, for

any prime p. Furthermore it is no longer the case that only the trivial
representation admits non-trivial (and "special") two-dimensional cohomology
classes. Eventually we restrict to the case p 2 where there are 9 genera

(originally described by Roiter [14] correcting a mistake in Diederichsen [6])
and 3 of these admit special classes. The assumption p 2 also insures

that the genera are identical to the isomorphism classes so there are no

further invariants to consider. This follows from work of Reiner [13] and

the fact that Z[e27U/m] is a unique factorization domain for m 2,4.

As the smallest dimension of a Z/p2-manifold is p2 — p + 1 (this is a

special case of results from [8]) only the case p 2 produces flat manifolds

of dimension 5, the smallest dimension for which one lacks a complete

classification. We show that there are at least 16 5-dimensional flat

manifolds with holonomy Z/4 and give a general lower bound for any

dimension.
The main ingredient for these results is the work of Heller and Reiner [7]

on the integral representation theory of Z/p2, reviewed in section 1. In

section 2 we study the cohomology of the indécomposables, compute their

restrictions to the subgroup of order p and identify the "special" classes.

Finally in section 3 we restrict to the case p 2 and study the class of

Z/4-manifolds.
It is hoped that this example of holonomy classification will succeed

in exposing the role played by integral representation theory and cohomology

of groups in understanding the structure of flat Riemannian manifolds.

It is a pleasure to thank I. Reiner for helpful correspondence concerning

integral representation theory.

§ 1. Genera of Z/p2-lattices

We begin by briefly reviewing the language and philosophy of the

integral representation theory of finite groups (see [5], [11]). We then give

Heller and Reiner's description [7] of the genera of Z/p2 lattices as

extensions.

Suppose A is a Z-order in a Q-algebra A. A A-lattice is a left A-

module that is also a free abelian group of finite rank. The basic problem
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of integral representation theory is the classification of such A-lattices,

A fixed. The Z-orders that we will need are group rings of finite groups

ZG c= QG and rings of algebraic integers (9K in an algebraic number field K.

We sometimes refer to a ZG-lattice as a G-lattice.

Let Zp (resp. Qp) denote the p-adic completion of Z (resp. Q). It is

easy to see that \p Zp ® A is a Zp-order in the Qp-algebra Ap. Furthermore,

any A-lattice M yields a Ap-lattice Mp Zp ® M. One says that M
and M' are locally isomorphic (or in the same genus) if Mp M'p as

Ap-modules for all primes p.

The classification of A-lattices is often attacked by a "local-to-global"
approach. By this we mean the solution of the following two problems:

1. (local) Determine a complete set of invariants of the genus of a

A-lattice.

2. (global) Determine a complete set of invariants of the isomorphism
class of A-lattice within a fixed genus.

This approach has been very successful and the examples below illustrate it.
We introduce some notation. Let co (resp. Q denote a primitive p2

(resp. pth) root of unity and let R1 Z[Ç], R2 Z[co]. We also let

Aj Z[Z/pf]. The classification of lattices over a ring of algebraic integers,
or more generally a Dedekind domain is classic, and is a good example
of the local-to-global approach.

(1.1) Theorem (Steinitz). If R is a Dedekind domain, every R-lattice
is a direct sum of non-zero ideals of R. The genus of an R-lattice is

determined by the number of non-zero ideals occurring, its rank. The

isomorphism class of the R-lattice within the genus is determined by the ideal
class of the product of the ideals as an element of the ideal class group of
R the Steinitz class of the lattice).

The classification problem for Z/p-lattices was solved by Diederichsen [6]
and Reiner [10]. Again the local-to-global approach is useful.

If a denotes a non-zero ideal of R1 let E(a) denote the non-split
extension of a by the trivial lattice Z. The genus of a (resp. E(a)) is
denoted a (resp. ß). Every Z/p-lattice M can be written :

M Z<a> ©£>=i a,. ©E;=i £(„;).
The genus of the Z/p-lattice M is determined by the multiplicities a, b, c
of the three indecomposable genera 1, a, ß. The isomorphism class of the
lattice within its genus is completely determined by the ideal class
Il i ai' n i ai in c'ass group of
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The solution of the (local) classification problem for R2 Z[co] (a

Dedekind domain) and A: Z[Z/p] can be combined to classify genera of

Z/p2-lattices. The technique used is essentially homological. If M is a

Z/p2-lattice, we let L {xeM:(xp — 1)M 0}. L is a Z/p-lattice and fits

into a Z/p2-exact sequence

0-+L-*M-+N-*0
where N is an R2-lattice. Hence one is reduced to classifying extensions of

jR2-lattices by Z/p-lattices using homological methods. It is not difficult
to show (see [13, p. 478]) that Ext2(R2, L) L/pL, where L is an arbitrary
Z/p-lattice. In fact, if a g L/pL then the corresponding extension is given

by the pushout diagram :

0 -»• (p2A2 -» A2 - K2 - 0

(1.2) I II

0 -> L -»• M -> R2 -> 0

where cp2 is the cyclotomic polynomial 1 + xp + x2p -f + x{p~1)p and the

map a is (by abuse of language) the map that sends cp2 to a. We write

(L, a) for this extension. The final result is :

(1.3) Theorem (Heller and Reiner [7]). There are 4p + 1 genera of
indecomposable Z/p2-lattices given by:

M1 Z,
M2 R19

M3 R2,

M4 A1

M5 (Z, 1),

M6(/c) (Ä! ~kk)

m#) (z®Ai.iex*),
M8(k)

Mg(k)(Z©*!,!®**),

0 ^ k ^ p — 1

1 < fc < p - 2,
0 ^ k ^ p — 2,
0 ^ /c ^ p - 2,

w/iere X (1 — x), Z[x]/(xp—1) and we t;iew Rx as a quotient

of A,.
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The splintering of these genera into isomorphism classes has been

analyzed by Reiner [13]. One can, of course, replace Rl7 R2 by ideal
classes in these rings and A1 by E(a) (cf. section 1) where a is an ideal

class in Rx. There is an additional invariant lying in a quotient of the

group of units of a certain finite ring and, if p 1 (mod 4) a certain

quadratic residue character mod p can also appear as an invariant. The

precise result is Theorem 7.3 of [13]. We will require only the observation
[13, p. 494] that if p 2, 3 there are no further invariants, i.e. each genus
of an indecomposable is a single isomorphism class. In the case p 5

already, although the class number of Q(e2m/m) is one for m 5, 25, the
21 genera of indécomposables split up into 40 isomorphism classes. Hence
already the further isomorphism invariants mentioned above exert an
influence.

§ 2. COHOMOLOGY, RESTRICTIONS AND SPECIAL CLASSES

If H is a finite group, M an //-lattice then: //'(//, M) ®p Hl(H, Mp),
where p ranges over the primes dividing the order of H [3, p. 84].
Hence if M and M' are locally isomorphic, H\H, M) H\H, M') ; so the
cohomology of an //-lattice depends only on its genus.

We recall the cohomology of a cyclic group Z/n <a> [3, p. 58].
We write N 1 + a + a"-1 and D 1 - a. If M is a Z/n-module, then

H°(Z/n, M) Ma

H2i'1(Z/n, M) nM/D • M
H2i(Z/n, M) M°/N • M

for all i ^ 1, where MCT denotes a-invariants and NM {x s M : Nx 0}.
From these remarks it is easy to compute the cohomology of the
indecomposable Z/p-lattices described in section 1.

(2.1) Proposition. The following table describes the cohomology of the
indecomposable Zip-lattices :

M rank H° H1 H2

1 1 Z 0 z/p
a P- 1 0 Z/p 0

ß P z 0 0
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