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SULLIVAN'S LAMINATION OF A PLANAR REGION

by Jan Mycielski

0. Introduction

Let R be a bounded open set on the plane R2, and B the boundary

of R. For any X a R2, H(X) denotes the convex hull of X. Our aim is

to give a simple proof of the following Theorem.

Theorem. For every p e R there exists a circle K such that the

open region bounded by K is included in R and p e H(K P B).

This theorem yields a division of R into convex sets, which is called a

lamination. D. Sullivan has proved [2] the existence of a similar lamination,
where H(K P B) is replaced by the Poincaré hull of K f] B relative to

K, i.e., the open region bounded by K less all the open regions D bounded

by circles orthogonal to K and such that D P K Q B 0 (The proof
of the existence of Sullivan's lamination is an easy modification of ours
and will be left to the interested reader.)

Sullivan's proof is based upon certain properties of approximations of B

by some curves in R3 which seem quite difficult. Our proof is based on the

same idea but the implementation is much easier, by a natural application
of nonstandard analysis. (I think that this proof may constitute a good
introduction to that method since, the simplification which it brings is quite
dramatic, and since I have tried to formulate it as closely as possible to
the original idea of nonstandard analysis which was told to me by
A.A. Robinson in 1962. Many subsequent presentations of nonstandard
analysis seem more distant from that original idea and, in some sense, are
less direct. The only prerequisites necessary for a full understanding of our
proof are the notions of elementary extensions and ultrapowers, see e.g. [1].)

1. A geometric lemma. Let F be a closed subset on the geometric
sphere S2. By the spherical convex hull of F, denoted SH(F), we mean the
mtersection of all closed half-spheres of S2 which include F. Let R be an



68 J. MYCIELSKI

open subset of the southern hemisphere of S2 and B the boundary of R.

We have the following analog of the above Theorem.

Proposition. For every p g R there is a circle K c S2 such that
the open cap bounded by K is included in R and there are three points
Qo Qi > #2 G K H & such ^at P e SRtio ^1^2}-

Proof Let H(B) be the usual convex hull of B in R3. Then the radius

connecting p to the center of S2 intersects H(B). Let q be a point of that
intersection which is nearest to p. Thus q is on the boundary of H(B).
Let P be a plane supporting H(B) at q. It is clear that the open half-

space bounded by P and containing p does not intersect B and its
intersection with S2 is a spherical cap included in R. Let K be the circle

P p) S2, i.e., the boundary of this cap. Of course there are q0, q1, q2 e K p| B

such that q e H {q0, q1, q2}. Since a projection from the center of S2 to S2

turns convex hulls of subsets of the southern hemisphere into their spherical

convex hulls, we have also p e SH {qQ, qx, q2 }.

Q.E.D.

Now we can quickly derive the Theorem from the Proposition using

some standard methods of nonstandard analysis; but for convenience of the

reader we add some preliminaries about those methods.

2. Preliminaries. Let (V, e) be Cantor's inverse, where e is the

ordinary membership relation, and let < W, e) be an elementary extension

of <V, e> such that R is a nonarchimedean field. {Since we will work
within <PT, e> we chose to denote the standard membership relation by e.

Thus x e X implies xeX but not vice versa. E.g., R is an element of V,

but there is no X in W such that x ë X x e R, unless both x and X
are in V. In fact (W, ë) thinks that R is archimedean, just like in the

"paradox" of Skolem an elementary submodel (V\ e'> of <K, e> thinks
that R is uncountable while {x:xe'R} and V' are countable.} (W, e)
can be any proper ultrapower extension of <L, e> with a countable exponent
(see e.g., [1]). The elements of V are called the standard objects and the

elements of W\V the nonstandard objects. The positive elements xëR such

that x < y for all y e R are called the (positive) infinitesimals. Their inverses

are called infinite reals. It is easy to check that

(i) If p g R" and p is at a finite distance from the origin, then there

exists a unique point s(p) g R" which is infinitesimally close to p.
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Of course if x e X <-+ x g Y and both X and Y are standard then

X Y. Hence, since V is closed under subsects,. for every X ç R" in W

there exists a unique standard set s[X] such that

y e s[X] <-* 3x e X [s(x) y]

(ii) For every X ç R", s[2f] is a closed set.

Proof. We can assume that X ^ 0 Since s[A] is standard it is

enough to show that for every standard p e R", pi s[X], there exists a

standard ball with center p disjoint with s[A]. Let U be the maximal ball

in W with center p disjoint with X. The radius of U is not an infinitesimal

nor 0 since otherwise we would have p e s[X], as there would be points
of X whose distance from p is infinitesimal. Thus U includes a ball

centered at p with some positive standard radius r. A ball centered at p with
radius r/2 is still standard and disjoint with s[X].

Q.E.D.

By related argument we can show

(iii) If K ç R", K is a circle, the center of K is at a finite distance

from the origin and the radius of K is finite, but not infinitesimal, then

s[K] is also a circle.

(In these preliminaries I have followed the precept of Robinson :

"to take full advantage of my idea you should identify standard objects
with their nonstandard extensions, and study their standard extensions from
this wider point of view." Later he did not always follow this idea (at least
in his notations), distinguishing e.g., the standard real line R from a
nonstandard one R *, i.e., he accepted an elementary mapping*: (V9 e>-
<JF, ë> instead of an elementary inclusion. I prefer to use the inclusion.)

3. Proof of the Theorem. Let R, B be as in the Theorem and
p e R. We take a sphere S2 of infinite radius resting on R2 at (0,0).
Let pr be the projection orthogonal to R2 of R and B into S2. Of course
pr(R (J B) is in the southern hemisphere of S2 and is infinitely close to
R (J B. We apply the Proposition to pr(R) and pr(p). Thus we get a circle K'
in S2 such that one open cap C bounded by K' is in pr(R), and there
are three points q0, ql9 q2 e K' f) pr{B) such that pr(p) e SH {q0, ql9 q2}.
Now it is easy to check that s[K'] is a standard circle in R2,
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s[C] <= slpr(R)-]U R
»

s(«o)» s(<3i), s(g2) e s[K' f) pr(B)~\ s[K'] f) B

and

p s(pr(p))e s[,SH{q0, qu q2}~\

Q.E.D.

Remarks. I. Instead of our infinite S2 Sullivan used a sequence of
growing spheres and had to prove that the circles K' in those spheres,

given by the Proposition, converge to the desired circle K. This was more
difficult; in fact he was dealing with the Poincaré analog of the above.

2. The Theorem generalizes to bounded open sets in R" without any
new ideas.
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