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4.2, LEmMMA. Let L be a lattice in R" whose elements have pairwise
distances > 1 and consider a linear subspace E of R" which is spanned
by k wvectors wy,..,w,e€L. If a lattice point we L is not contained
in E, then its E*-component w* has length

|wh | = B+ wy|+..+w)".

Proof. Let N be the integer part of 3+ |w,|+...+|w, )" If0 < | w* | < 1/N,
then 0, w, 2w, ..., Nw have distance < 1 from E. Adding suitable integer linear
combinations of w,, .., w, to each of these vectors we obtain N + 1 new
pairwise different lattice points whose E+ components have not changed but

1
whose E components are < 7 (w4 ...+ |w]). These N + 1 lattice points have

: 1 .. _
distance < 1 +§(|wll+...+lwk|) from the origin, a contradiction to

Lemma 4.1.

5. PROOF OF THEOREM II

For an n-dimensional crystallographic group G we let I(G) be the sub-
group consisting of all pure translations in G. By Theorem I, L(G) 1s a
lattice in R”. The standard observation which is “responsible” for Theorem !l
1s

51. Lemma. If aeG and if weL(G), then A(w)e L(G),(A=rota.

Proof. Recall that w = trans @, ® € I(G). Now awo '€ G is a trans-
lation with translation vector A(w). Hence A(w) € L(G).

5.2. Definition. A crystallographic group is called normal if

(i) the vectors in L(G) have pairwise distances > 1

(i) L(G) contains n linearly independent unit vectors.

We do not ask that the vectors in (ii) generate the entire lattice I(G .
Our idea is to count the normal groups. This will suffice due to th:
following.

5.3. PROPOSITION. Each crystallographic group G is isomorphic to a norme!
crystallographic group.
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Proof. By scaling we may assume that the shortest non zero vector in
I(G) is a unit vector. Now assume by induction that I(G) satisfies 5.2 (1)
and contains k < n unit vectors wy, ..., w, which span a k-dimensional linear
subspace E of R™ It remains to find a group G’ isomorphic to G such that
L(G) contains k + 1 linearly independent unit vectors and also satisfies
5.2 (1).

If for some o € G and for some w{i<k) the vector A(w;) is not contained
in E, then by Lemma 5.1 A(w;) € L(G) is already the (k+ 1)-st vector and we
are done.

If on the other hand all rotation parts of G leave E—and consequently E*—
invariant, then the affine transformations @, given by

O, (x*+x) = xF + px*

(1>0) commute with the rotation parts of G. Therefore, the affine conjugate
(and henceforth isomorphic) groups G, = ®, G ® ;! also act by rigid motions.
Since (G,) = @, (L(G)), Lemma 4.2 implies that G, violates 5.2 (i) if p > 0
is very small. Hence there exists a minimal p’ > 0 such that G, satisfies
5.2 (i). Since the affine transformations ®, act trivially on E, the shortest
vector in L(G,)\E must be a unit vector and wy, .., w, € L{(G,). Now G
has the required properties and Proposition 5.3 is proved.

54. The proof of Theorem Il now proceeds in two steps.

Step 1. Each normal crystallographic group G is uniquely characterized by
a group table ((i1) below ).

Proof. Fix n linearly independent unit vectors w,,..w, € L(G) and
consider the sublattice

L={mw, +..+mw,| m,.,me 7).

L'is a subgroup of G. In each right coset modulo L of G we select a
representative @ whose translation part w has length

. 1 n
(1) |w| < §(|w1|+...+|w,,|) =5
Since G is discrete (2.4. (i), there are only finitely many such representatives,

4y ®,14,..,0y. Every € G can now be expressed in a unique way in
the form

o= mw,+..+mw,)o,
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where n + 1 < v < N. Since our L is isomorphic to Z", G is uniquelyt
determined (up to isomorphism) by the integers m;;, Vv(j, k) and N which occur
in the table

(11) OJJO)k — (mljkwl —}-...-{-m,,jkw,,) (‘Ov(j,k) 5 j, k == 1, seny N .

(For i=1, .., n, o; is the translation by w)).
Clearly, the proof of Theorem II will be completed by

Step 2. The absolute values of mj, v(j, k) and N in (i) have an upper
bound which depends only on the dimension n (see (i) and (iv)
below ).

Proof. The euclidean motions ®,; ), ®; and w, in (ii) have translation

n . .

parts of length < E(C.f. (1)). Consequently the translation m; ;w; + ... + m,;w,
i 3n :

= 0,00 K has length < > In particular,

3n
lmUkW;L[S'_ lzla"'sn

2 ?

where wi is the component of w; perpendicular to the hyperplane E spanncd
by Wy, ey Wi_ 1> Wisqs . W,. By Lemma 4.2 we have | wi | = (n+2)™". Hence

i | m ] < a2y

Now let us estimate N. The linear transformation A = rota, e G is
uniquely determined by its images A(w,), i = 1, .., n. By Lemma 5.1 each
these images is a unit vector of L(G) and, by Lemma 4.1, one out of it
most 3" candidates. It follows that at most (3")" different rotation pa:is
occur in G.

If two elements ®, and ®, among ®,,,, .., ®y have the same rotaticn

part, then o0, " is a vector of length < g +g (cf. (1)) and, again by
Lemma 4.1, one out of at most (2n+ 1)" candidates. Hence
(iv) N<n+ 3 2n+1).

Since W(i, j) < N, this concludes the proof of Theorem II.
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Remark. From the preceding proof we can derive the upper bound

exp exp 4n” for the number of isomorphism classes of n-dimensional crystallo-
oraphic groups. The correct numbers for n = 1,2,3,4 are respectively
2,17, 219, 4783 [4].
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