Zeitschrift:	L'Enseignement Mathématique
Herausgeber:	Commission Internationale de l'Enseignement Mathématique
Band:	31 (1985)
Heft:	1-2: L'ENSEIGNEMENT MATHÉMATIQUE
Artikel:	GROUP EXTENSIONS AND THEIR TRIVIALISATION
Autor:	Berrick, A. J.
Kapitel:	2. Relative completeness and co-completeness
DOI:	https://doi.org/10.5169/seals-54563

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. <u>Siehe Rechtliche Hinweise.</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. <u>Voir Informations légales.</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. <u>See Legal notice.</u>

Download PDF: 22.12.2024

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

PROPOSITION 1.5. Let Q be perfect and K hypoabelian. An extension $K \mapsto G \xrightarrow{\pi} Q$ lies in the image of A if and only if both a) π is an epimorphism preserving perfect radicals (that is, $\pi \mathscr{P}G = Q$); and b) $[\mathscr{P}G, K] = 1$.

These conditions are easily verified for an extension where the kernel lies in the hypercentre of G. For then K must be nilpotent, so that condition (a) is satisfied by [3 (2.3) (iii)]. On the other hand, because G acts nilpotently on K so does $\mathscr{P}G$; by Kaluzhnin's theorem [18 (7.1.1.1)] the image of the perfect group $\mathscr{P}G$ in Aut(K) induced by conjugation is nilpotent and hence trivial. This result also admits a converse, for if K is nilpotent then the extension obtained by the construction A is easily seen to have its kernel in the hypercentre.

COROLLARY 1.6. Let K be a nilpotent group and Q perfect. Then the set of equivalence classes of extensions with kernel K in the hypercentre and with quotient Q is in 1-1 correspondence with $H^2(Q; Z(K))$ $\cong \operatorname{Hom}(H_2(Q), Z(K)).$

Here $H_2(Q) = H_2(Q; \mathbb{Z})$ is just the Schur multiplier of Q. The given isomorphism is immediate from the universal coefficient theorem because Q is perfect.

2. Relative completeness and co-completeness

This paragraph takes us to the point of departure for our examples.

PROPOSITION 2.1. Suppose that groups Q and K have the property that every homomorphism from Q to Out(K) is trivial. Then every extension with kernel K and quotient Q is trivial, provided that also either (a) K is centreless, or

(b) Q is superperfect.

Case (a) of (2.1) is of course known and includes the example of complete groups (that is, Out(K) = 1 too). It follows immediately from (1.3).

Case (b) requires a little more attention. Recall that Q superperfect means that its first and second homology groups with trivial integer coefficients both vanish. By means of the universal coefficient/Künneth formulae, the first and second cohomology with arbitrary trivial coefficients are also zero. So both the H^2 and Hom sets in the exact sequence of (1.1) are singletons.

A. J. BERRICK

The following terminology is suggested by (2.1). Let \mathbf{Q} be a class of groups. Then K is complete relative to \mathbf{Q} if every extension with kernel K and quotient in \mathbf{Q} is trivial. The next result is widely known, but is included for the sake of completeness (sic).

PROPOSITION 2.2. A group K is complete if and only if it is complete relative to all groups.

Proof. It remains to establish the sufficiency of the relative condition. We first show that K is centreless. This can be done by a little homological algebra applied to H^2 in the exact sequence of (1.1). More directly, let Z_1 and Z_2 be two copies of Z = Z(K), equipped with isomorphisms $\theta_j: Z \to Z_j$, j = 1, 2. In the group $K \times (Z_1 * Z_2)$, let \overline{Z} denote the normal closure of the subgroup generated by all elements of the form

$$(z, 1) [(1, \theta_1(z)), (1, \theta_2(z))]$$

with $z \in Z$, and let G be the quotient $(K \times (Z_1 * Z_2))/Z$. Evidently K is normal in $K \times (Z_1 * Z_2)$ and so in G. From the triviality of the extension $K \xrightarrow{1} G \twoheadrightarrow G/\iota(K)$, there is a left inverse $\rho: G \to K$ to ι . Thus the triviality of each $[\iota K, (1, \theta_j(z))]$ in G implies that of $[K, \rho(1, \theta_j(z))]$ in K, making each $\rho(1, \theta_j(z)) \in Z$. Then any $z \in Z$ satisfies

$$z = \rho\iota(z) = \rho(z, 1) = \rho[(1, \theta_2(z)), (1, \theta_1(z))]$$

= $[\rho(1, \theta_2(z)), \rho(1, \theta_1(z))]$
 $\in [Z, Z] = 1.$

Hence K is indeed centreless, so that (1.3) applies. In particular the set Hom(Out(K), Out(K)) must be a singleton, forcing Out(K) = 1.

The literature contains various results which may be expressed as examples of relative completeness (such as [21 Exercises 536, 537]). It is sometimes convenient to dualise this phraseology. Thus, for a class C of groups, we say that Q is *co-complete relative to* C if $\mathscr{E}xt(Q, K)$ is trivial whenever $K \in \mathbb{C}$. The asymmetry between these two concepts is highlighted by the absence of a counterpart to (2.2); that is, there are no non-trivial (absolutely) co-complete groups. To see this, consider the left regular representation of Q regarded as a non-trivial homomorphism from Q to the automorphism group of the free abelian group $Fr(Q)_{ab}$ generated by the elements of Q. The semi-direct product which results (via E) is then a non-trivial element of $\mathscr{E}xt(Q, Fr(Q)_{ab})$.

160

This example is quite suggestive inasmuch as, in order to find a group relative to which the quotient Q is not co-complete, we have passed to a group which is large in comparison with Q. One might therefore speculate on the existence of quotient groups which are co-complete relative to all groups of a certain size. Examples of such quotients are presented in the next paragraph.

3. Examples

In view of (2.1), our examples are of superperfect groups Q whose homomorphic images of sufficiently small cardinality, say $\leq \alpha$, are all trivial. For this purpose it is worth recalling that an abelian group with a generating set of cardinality β has automorphism group of order at most 2^{β} . We feature three types of example.

I. The acyclic groups considered by de la Harpe and McDuff

Acyclic groups have the same homology (with trivial integer coefficients) as the trivial group and so are certainly superperfect. On the other hand, the acyclic groups discussed in [12] have the further property that any countable image is trivial. Hence they are *co-complete relative to all* K with Out(K) countable, and in particular relative to all finitely generated groups.

II. The universal central extension over a simple group

Let S be a non-abelian simple group. Being perfect, S admits a universal central extension Q [14], [17] (that is, an initial object in the category of all equivalence classes of extensions with central kernel and quotient S). Now Q is well-known to be superperfect — indeed, it is the unique superperfect central extension over S —, so we consider its possible images.

PROPOSITION 3.1. The non-trivial homomorphic images of Q are precisely the perfect central extensions of S.

Since any image of Q is also perfect, clearly not all central extensions over S need be obtained in this way. For example, take the direct product of such an extension with an abelian group. However, if E has quotient Sand central kernel then by [2 (1.6)b)] so does its maximal perfect subgroup $\mathscr{P}E$. So every central extension contains a preferred perfect central