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COROLLARY 38. Assume that the definite space (€; , )) is complete
and that the system of types (Corollary 26) is linearly independent in
[/2 (considered as a Z,-vector space) then the conclusions (i), (ii), (iii)
of Theorem 37 hold.

C(€) in Theorem 37 is not complete (unless finite dimensional). Its
quadratic form ¢, > can be extended to the completion C. By using

Theorem 28 one can see that this completion has L, ,(C) = L(C) if and only
if E has L, ,(E) = LJ(E).

XI. CONTINUOUS OPERATORS ARE NOT ALWAYS BOUNDED

XI.1. INTRODUCTION. Let € be an infinite dimensional definite space
in the sense of Definition 15. A linear map (operator) h: € — € 1s called
bounded iff there exists ye I such that for all xe & we have o@{hx)
27+ 0x).

In [6] A. Fissler gave an explicit example of a continuous operator
h on an orthomodular space € that is not bounded; she also proved a
criterion for boundness which is very useful in the study of the algebra
A(€) of bounded operators h: € - € when € is an orthomodular definite
space of a certain kind. We shall prove this criterion anew here as its
original proof can be shortened considerably.

We shall consider definite spaces that satisfy

(19) (€; {, ») contains a maximal orthogonal family (e,)y such that the
groups O(¢(e;») are different.

By (14) we see that (19) is a property of € not of (e)y; Keller’s
original example of an orthomodular space satisfies (19).

X12. FAssLErR’S CRITERION. In this subsection let (€;< , }) be an
infinite dimensional orthomodular space that has (19). Fix a maximal

orthogonal family (e)y that enjoys (19). If f: G — G is given, expand
(Lemma 27)

(20) fei= 3 oye;  (ieN)

JjeN

THEOREM 39 ([6]). The linear map f is bounded iff it is continuous
L (nd satisfies




|
|
}
i
[

208 H. GROSS AND U.-M. KUNZI

(21) {oo; | T o{fe;y = T o<e;)} is bounded below.

The heart of the proof of Theorem 39 is the following consequence of
assumption (19).

LemMMmA 40 [6]. If f is continuous then (19) implies that the set
It = {ieNJo{fer) < ¢le) & o{fe) # o<e;) (mod 2I)} s finite.

Proof. We renumber the e; such that O(pde;>) = O(ple; ., >). If we
at

replace e; by a multiple then its group does not change; therefore we may
assume without loss of generality that for all r, s € N we have

(22) r<s=0{)e0(pe)), ) =0

From (22) we obtain that for all r, s e N

- (23) r<s=VYoel:pdle) <|ople,y + 20|

If iel then @{fe;) = p{e;» for some j # i Let I, = I be the subset
of those i for which the j is smaller than i. Thus, if ieI\I, then
o fe;) = ole;p + 20u; < ©<e;»; so by (23) we must actually have
o{fe;) < —p<e;» < 0. Since (¢;) is a null sequence we see that I\I, has
to be finite (because {fe;|ie I\I,} must also be a null sequence if I\I,
is infinite). Thus, in order to prove Lemma 40 we have to show that I,
is finite.

The idea in [6] ist to show that for each ie I, there is A, €k such
that @{f(Ae;)) < 0 and @{Ae;) = 0 so that by the same token I, must
be finite. This is accomplished by choosing, in turn, A = 1, A = {fe,> "}
according as to whether @{ fe;> is < 0, > 0 respectively.

Proof of Theorem 39. Assume that f is bounded. Continuity is obvious.
Let y e I be a bound for f and let y, = min {0, y}. Now o{(fe;> = o{oye;)
for all i ocurring in (21), i.e, for all i e N\I (by assumption (19) we have
Tode,) # To<e;» for all i # j). Thus, if @a; > 0 then trivially @oy; > vo;
if pa; < 0 then (o) > 290, = v 2 vo.

Assume conversely that f is continuous and has (21). We show that
there is vy, € I’ with @{fe¢;> = v, + 9©<¢;> (ieN). Let y be a lower bound
for the set in (21) and set yo: = min {0, 2y, v, .., v,} Where v,: = o{(fe,)
— @{e,»,vel. To finish the proof we conclude @< fx) > @<{x> + v, (V3)
by continuity of f:

cp<f§ Ee> = 0S(Eeind) = Yo + 0t = To + OCE) .
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