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214 H. OSBORN

1. Endomorphism ALGEBRAS

In this section V will be an arbitrary module over a commutative ring R

with unit, and for each p ^ 0 Ap V will be its pih exterior power and

End Ap V will be the ^-module of endomorphisms Ap V -»>- Ap V ;

Ilp End A p V will be the direct product of the i^-modules End A p V. We shall

define three distinct products in Ilp End Ap V ; the first two products are

standard, and they will be used to define the third product. If Ap V itself
vanishes for sufficiently large p ^ 0 the direct product IIp End A p V and the

direct sum IIP End A p V agree ; although this special condition will be satisfied

in later sections the definitions in this section will be formulated in complete

generality for the direct product Elp End A p V.

Elements of EIp End Ap V will be indicated by boldface capital letters

A, B,..., the pth components being Ap, Bp,... e End Ap V for each p ^ 0.

The simplest product in Ylp End Ap V is induced by compositions : the

pth component of the composition product AB g IIp End Ap V is the usual

composition ApBp g End A p V of the endomorphisms Ap and Bp of A p V,

where ApBq 0 for p ^ q. Trivially IIp End Ap V is an associative R-algebra
with respect to the composition product, and there is a two-sided unit
element I whose pth component is the identity endomorphism Ip e End A p V

for each p > 0.

There is another reasonably familiar product in IIp End A p V, the product
of Ap g End A p V and Bq g End Aq V providing an element

Ap- Bq g End Ap + q V

for each p ^ 0 and each q ^ 0. Since elements of End Ap + q V are uniquely
defined in terms of the behavior on exterior products xt a a xp+q g A p+q V,

it suffices to require that

(Ap ' Bq) (x^ a a xp + q) znAp{xni a a xnp) a B^(xn(p+1) a a +

where the sum is computed over all permutations n of {1 ,...,p + q} such

that both 7T1 < < np and n(p+l) < < n(p + q\ and where sn is the

parity + 1 of the permutation n. Such "shuffle products" Ap - Bq g End A p+q V

provide a unique shuffle product A • B e nr End Ar V of any two elements

A and Bin nr End Ar V.

One easily verifies that the shuffle product is associative and strictly
commutative; specifically, Ap • Bq Bq • Ap g End Ap+q V with no plus-or-
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minus signs. For example, for p 1 and q 1 one has

{A1 • Bx) (xx a x2) Axxx a Bxx2 - Axx2 a B1x1

— Bxx2 a Axxx -b Bxxx a Axx2 — {Bx ' Ay) X2 a x-^)

(Bx • A(Xi a X2)

hence A, • B1 E, • ^ g End A 2 F. The algebra Tlp End A * F has a unique

(two-sided) unit element with respect to the shuffle product, whose only

nonzero component is the identity endomorphism I0 of A0 F.

For any endomorphism A of F itself and any p ^ 0 there is a well-

defined element Ap g End A p F such that

-^4_p(xc 1 a a xp) Axx a a Axp

for any xx a a xpe Ap V; in particular Al A. Observe that the p-fold

shuffle product A'p A •... • A is defined by

A p(x! a a xp) ei*Axni a a Axnp,

the summation extending overall p\ permutations n of {1,..., pj. Since

8nAxnl A A Axnp Axx A A Axp for each permutation n it follows that

A 'p p\ Ap. For this reason Ap can reasonably be written —j-
A 'p, without

requiring the ground ring to contain the element —-. Thus the direct product
P'

of the elements AD( — ,4'p ] over all p ^ 0 is essentially an exponential
V /

e'A g üp End Ap F. One easily verifies that e'A • e'( A)
— I0 e'{ A)-e'A,

where I0 g End A 0 F represents the unit element in Hp End A p V with respect
to the shuffle product.

For each p ^ 0 the p-fold shuffle product I 'p of the identity endomorphism

Ie End F satisfies \ Vp ID, where ID is the identity endomorphism in
P

End A p F. Hence e '1 is precisely the two-sided unit element I of Hp End A p V
with respect to the composition product. Since

e-'-e'W I0

where 70 g End A 0 F represents the unit element with respect to the shuffle
product, one can therefore define an invertible map a of Hp End Ap V
into itself by letting aA g üp End A p V be the shuffle product e '1 • A for any
AeIlpEnd APF; the inverse a-1 of a is given by oc_1A e'{~n'A.
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1.1 Definition : The third product of any two elements A and B of End A p V

is given by A x B a" x((aA) (aB)) e Tlp End Ap F, where (aA) (aB) is the

composition product of the shuffle products aA e '1 • A and aB e '1 • B.

Since the composition product is associative the third product is trivially
associative. Furthermore, if 70 e End A0 F represents the unit element in

Tlp End A p V with respect to the shuffle product one has

70 x A a_1((a/0) (aA)) a-1((e'7) (aA)) a-1(l(aA)) a-1(aA) A

and similarly A x 70 A for any Aenp End Ap V; that is, 70 is also the

unit element of Ylp End A p V with respect to the third product. The rationale
for introducing the third product appears in the next section.

2. The trace

We now specialize the arbitrary TCmodule F of the preceding section.

2.1 Definition: A module F over a commutative ring R with unit is

traceable of rank n > 0 if and only if End An V is a free R-module

of rank one.

If A " F is itself free of rank one then F is clearly traceable of rank n.

However, End An V can be free of rank one with no such condition on

A" V. For example, let X be any paracompact hausdorff space, let R

be the ring C(X) of continuous real-valued functions on X, and let V

be the C(X)-module of continuous sections of a real n-plane bundle £ over

X ; then V is traceable of rank n. However An V is itself free of rank one

if and only if £ is orientable.
Flanders [1] showed for any module V over a commutative ring with

unit that if A" F is free of rank one then Ap V 0 for every p > n\

a similar argument shows that if F is traceable of rank n > 0 then

End Ap V 0 for every p > n. Thus if F is traceable of rank n > 0

there is no distinction between the direct product np End A p V and the direct

sum llp End Ap V. Consequently the third product of Definition 1.1 can be

regarded as a product in Up End Ap V whenever F is traceable.

If F is traceable of rank n then every element of End A" F is scalar

multiplication by a unique element of the commutative ground ring R

with unit. For example, for any A g 11
p

End Ap V and each p 0,..., n let
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