Zeitschrift:	L'Enseignement Mathématique
Band:	31 (1985)
Heft:	1-2: L'ENSEIGNEMENT MATHÉMATIQUE
Artikel:	THE TRACE AS AN ALGEBRA HOMOMORPHISM
Kapitel:	1. Endomorphism algebras
Autor:	Osborn, Howard
DOI:	https://doi.org/10.5169/seals-54566

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. <u>Siehe Rechtliche Hinweise.</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. <u>Voir Informations légales.</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. <u>See Legal notice.</u>

Download PDF: 17.10.2024

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

H. OSBORN

1. ENDOMORPHISM ALGEBRAS

In this section V will be an arbitrary module over a commutative ring R with unit, and for each $p \ge 0$ $\wedge^p V$ will be its p^{th} exterior power and End $\wedge^p V$ will be the R-module of endomorphisms $\wedge^p V \to \wedge^p V$; $\Pi_p \text{ End } \wedge^p V$ will be the direct product of the R-modules End $\wedge^p V$. We shall define three distinct products in $\Pi_p \text{ End } \wedge^p V$; the first two products are standard, and they will be used to define the third product. If $\wedge^p V$ itself vanishes for sufficiently large $p \ge 0$ the direct product $\Pi_p \text{ End } \wedge^p V$ and the direct sum $\Pi_p \text{ End } \wedge^p V$ agree; although this special condition will be satisfied in later sections the definitions in this section will be formulated in complete generality for the direct product $\Pi_p \text{ End } \wedge^p V$.

Elements of $\Pi_p \operatorname{End} \wedge^p V$ will be indicated by boldface capital letters A, B, ..., the p^{th} components being $A_p, B_p, ... \in \operatorname{End} \wedge^p V$ for each $p \ge 0$. The simplest product in $\Pi_p \operatorname{End} \wedge^p V$ is induced by compositions: the p^{th} component of the *composition product* $AB \in \Pi_p \operatorname{End} \wedge^p V$ is the usual composition $A_pB_p \in \operatorname{End} \wedge^p V$ of the endomorphisms A_p and B_p of $\wedge^p V$, where $A_pB_q = 0$ for $p \ne q$. Trivially $\Pi_p \operatorname{End} \wedge^p V$ is an associative *R*-algebra with respect to the composition product, and there is a two-sided unit element I whose p^{th} component is the identity endomorphism $I_p \in \operatorname{End} \wedge^p V$

There is another reasonably familiar product in Π_p End $\wedge^p V$, the product of $A_p \in \text{End } \wedge^p V$ and $B_q \in \text{End } \wedge^q V$ providing an element

$$A_p \cdot B_q \in \text{End} \wedge {}^{p+q} V$$

for each $p \ge 0$ and each $q \ge 0$. Since elements of End $\wedge^{p+q} V$ are uniquely defined in terms of the behavior on exterior products $x_1 \wedge \dots \wedge x_{p+q} \in \wedge^{p+q} V$, it suffices to require that

$$(A_p \cdot B_q) (x_1 \wedge \dots \wedge x_{p+q}) = \sum_{\pi} \varepsilon_{\pi} A_p (x_{\pi 1} \wedge \dots \wedge x_{\pi p}) \wedge B_q (x_{\pi (p+1)} \wedge \dots \wedge x_{\pi (p+q)})$$

where the sum is computed over all permutations π of $\{1, ..., p+q\}$ such that both $\pi 1 < ... < \pi p$ and $\pi(p+1) < ... < \pi(p+q)$, and where ε_{π} is the parity ± 1 of the permutation π . Such "shuffle products" $A_p \cdot B_q \in \text{End } \wedge^{p+q} V$ provide a unique shuffle product $\mathbf{A} \cdot \mathbf{B} \in \Pi$, End $\wedge^r V$ of any two elements \mathbf{A} and \mathbf{B} in Π , End $\wedge^r V$.

One easily verifies that the shuffle product is associative and strictly commutative; specifically, $A_p \cdot B_q = B_q \cdot A_p \in \text{End } \wedge^{p+q} V$ with no plus-or-

minus signs. For example, for p = 1 and q = 1 one has

$$(A_1 \cdot B_1) (x_1 \wedge x_2) = A_1 x_1 \wedge B_1 x_2 - A_1 x_2 \wedge B_1 x_1$$

= $-B_1 x_2 \wedge A_1 x_1 + B_1 x_1 \wedge A_1 x_2 = (B_1 \cdot A_1) (-x_2 \wedge x_1)$
= $(B_1 \cdot A_1) (x_1 \wedge x_2)$,

hence $A_1 \cdot B_1 = B_1 \cdot A_1 \in \text{End} \wedge^2 V$. The algebra $\prod_p \text{End} \wedge^p V$ has a unique (two-sided) unit element with respect to the shuffle product, whose only nonzero component is the identity endomorphism I_0 of $\wedge^0 V$.

For any endomorphism A of V itself and any $p \ge 0$ there is a welldefined element $A_p \in \text{End } \wedge^p V$ such that

$$A_p(x_1 \land \dots \land x_p) = Ax_1 \land \dots \land Ax_p$$

for any $x_1 \wedge ... \wedge x_p \in \wedge^p V$; in particular $A_1 = A$. Observe that the *p*-fold shuffle product $A^{\cdot p} = A \cdot ... \cdot A$ is defined by

$$A^{\bullet p}(x_1 \wedge \dots \wedge x_p) = \sum_{\pi} \varepsilon_{\pi} A x_{\pi 1} \wedge \dots \wedge A x_{\pi p},$$

the summation extending overall p! permutations π of $\{1, ..., p\}$. Since $\varepsilon_{\pi}Ax_{\pi 1} \wedge ... \wedge Ax_{\pi p} = Ax_1 \wedge ... \wedge Ax_p$ for each permutation π it follows that $A^{\cdot p} = p! A_p$. For this reason A_p can reasonably be written $\frac{1}{p!} A^{\cdot p}$, without requiring the ground ring to contain the element $\frac{1}{p!}$. Thus the direct product of the elements $A_p \left(= \frac{1}{p!} A^{\cdot p} \right)$ over all $p \ge 0$ is essentially an exponential $e^{\cdot A} \in \prod_p \text{End } \wedge^p V$. One easily verifies that $e^{\cdot A} \cdot e^{\cdot (-A)} = I_0 = e^{\cdot (-A)} \cdot e^{\cdot A}$, where $I_0 \in \text{End } \wedge^0 V$ represents the unit element in $\prod_p \text{End } \wedge^p V$ with respect to the shuffle product.

For each $p \ge 0$ the *p*-fold shuffle product $I^{\cdot p}$ of the identity endomorphism $I \in \text{End } V$ satisfies $\frac{1}{p!}I^{\cdot p} = I_p$, where I_p is the identity endomorphism in End $\wedge^p V$. Hence $e^{\cdot I}$ is precisely the two-sided unit element I of Π_p End $\wedge^p V$ with respect to the composition product. Since

$$e^{\cdot I} \cdot e^{\cdot (-I)} = I_0 = e^{\cdot (-I)} \cdot e^{\cdot I},$$

where $I_0 \in \text{End} \wedge^0 V$ represents the unit element with respect to the shuffle product, one can therefore define an invertible map α of $\prod_p \text{End} \wedge^p V$ into itself by letting $\alpha \mathbf{A} \in \prod_p \text{End} \wedge^p V$ be the shuffle product $e^{\cdot I} \cdot \mathbf{A}$ for any $\mathbf{A} \in \prod_p \text{End} \wedge^p V$; the inverse α^{-1} of α is given by $\alpha^{-1}\mathbf{A} = e^{\cdot (-I)} \cdot \mathbf{A}$. 1.1 Definition: The third product of any two elements **A** and **B** of Π_p End $\wedge^p V$ is given by $\mathbf{A} \times \mathbf{B} = \alpha^{-1}((\alpha \mathbf{A}) (\alpha \mathbf{B})) \in \Pi_p$ End $\wedge^p V$, where $(\alpha \mathbf{A}) (\alpha \mathbf{B})$ is the composition product of the shuffle products $\alpha \mathbf{A} = e^{\cdot I} \cdot \mathbf{A}$ and $\alpha \mathbf{B} = e^{\cdot I} \cdot \mathbf{B}$.

Since the composition product is associative the third product is trivially associative. Furthermore, if $I_0 \in \text{End } \wedge^0 V$ represents the unit element in $\prod_p \text{End } \wedge^p V$ with respect to the shuffle product one has

$$I_0 \times \mathbf{A} = \alpha^{-1} ((\alpha I_0) (\alpha \mathbf{A})) = \alpha^{-1} ((e^{\cdot I}) (\alpha \mathbf{A})) = \alpha^{-1} (\mathbf{I}(\alpha \mathbf{A})) = \alpha^{-1} (\alpha \mathbf{A}) = \mathbf{A}$$

and similarly $\mathbf{A} \times I_0 = \mathbf{A}$ for any $\mathbf{A} \in \prod_p \text{End} \wedge^p V$; that is, I_0 is also the unit element of $\prod_p \text{End} \wedge^p V$ with respect to the third product. The rationale for introducing the third product appears in the next section.

2. The trace

We now specialize the arbitrary R-module V of the preceding section.

2.1 Definition: A module V over a commutative ring R with unit is traceable of rank n > 0 if and only if End $\wedge^n V$ is a free R-module of rank one.

If $\wedge^n V$ is itself free of rank one then V is clearly traceable of rank n. However, End $\wedge^n V$ can be free of rank one with no such condition on $\wedge^n V$. For example, let X be any paracompact hausdorff space, let R be the ring C(X) of continuous real-valued functions on X, and let V be the C(X)-module of continuous sections of a real n-plane bundle ξ over X; then V is traceable of rank n. However $\wedge^n V$ is itself free of rank one if and only if ξ is orientable.

Flanders [1] showed for any module V over a commutative ring with unit that if $\wedge^n V$ is free of rank one then $\wedge^p V = 0$ for every p > n; a similar argument shows that if V is traceable of rank n > 0 then End $\wedge^p V = 0$ for every p > n. Thus if V is traceable of rank n > 0there is no distinction between the direct product $\prod_p \text{End } \wedge^p V$ and the direct sum $\coprod_p \text{End } \wedge^p V$. Consequently the third product of Definition 1.1 can be regarded as a product in $\coprod_p \text{End } \wedge^p V$ whenever V is traceable.

If V is traceable of rank n then every element of End $\wedge^n V$ is scalar multiplication by a unique element of the commutative ground ring R with unit. For example, for any $\mathbf{A} \in \mathbf{H}_p$ End $\wedge^p V$ and each p = 0, ..., n let