Zeitschrift: L'Enseignement Mathématique Herausgeber: Commission Internationale de l'Enseignement Mathématique **Band:** 31 (1985) Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE **Artikel:** THE TRACE AS AN ALGEBRA HOMOMORPHISM Autor: Osborn, Howard **Kapitel:** 2. The trace **DOI:** https://doi.org/10.5169/seals-54566 ## Nutzungsbedingungen Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Siehe Rechtliche Hinweise. ## Conditions d'utilisation L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. <u>Voir Informations légales.</u> #### Terms of use The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. See Legal notice. **Download PDF: 22.12.2024** ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch 1.1 Definition: The third product of any two elements **A** and **B** of Π_p End $\wedge^p V$ is given by $\mathbf{A} \times \mathbf{B} = \alpha^{-1}((\alpha \mathbf{A})(\alpha \mathbf{B})) \in \Pi_p$ End $\wedge^p V$, where $(\alpha \mathbf{A})(\alpha \mathbf{B})$ is the composition product of the shuffle products $\alpha \mathbf{A} = e^{\cdot I} \cdot \mathbf{A}$ and $\alpha \mathbf{B} = e^{\cdot I} \cdot \mathbf{B}$. Since the composition product is associative the third product is trivially associative. Furthermore, if $I_0 \in \text{End } \wedge^0 V$ represents the unit element in $\Pi_p \text{ End } \wedge^p V$ with respect to the shuffle product one has $$I_0 \times \mathbf{A} = \alpha^{-1}((\alpha I_0)(\alpha \mathbf{A})) = \alpha^{-1}((e^{i})(\alpha \mathbf{A})) = \alpha^{-1}(\mathbf{I}(\alpha \mathbf{A})) = \alpha^{-1}(\alpha \mathbf{A}) = \mathbf{A}$$ and similarly $\mathbf{A} \times I_0 = \mathbf{A}$ for any $\mathbf{A} \in \Pi_p$ End $\wedge^p V$; that is, I_0 is also the unit element of Π_p End $\wedge^p V$ with respect to the third product. The rationale for introducing the third product appears in the next section. # 2. The trace We now specialize the arbitrary R-module V of the preceding section. 2.1 Definition: A module V over a commutative ring R with unit is traceable of rank n > 0 if and only if End $\wedge^n V$ is a free R-module of rank one. If $\wedge^n V$ is itself free of rank one then V is clearly traceable of rank n. However, End $\wedge^n V$ can be free of rank one with no such condition on $\wedge^n V$. For example, let X be any paracompact hausdorff space, let R be the ring C(X) of continuous real-valued functions on X, and let V be the C(X)-module of continuous sections of a real n-plane bundle ξ over X; then V is traceable of rank n. However $\wedge^n V$ is itself free of rank one if and only if ξ is orientable. Flanders [1] showed for any module V over a commutative ring with unit that if $\wedge^n V$ is free of rank one then $\wedge^p V = 0$ for every p > n; a similar argument shows that if V is traceable of rank n > 0 then End $\wedge^p V = 0$ for every p > n. Thus if V is traceable of rank n > 0 there is no distinction between the direct product Π_p End $\wedge^p V$ and the direct sum $\coprod_p \operatorname{End} \wedge^p V$. Consequently the third product of Definition 1.1 can be regarded as a product in $\coprod_p \operatorname{End} \wedge^p V$ whenever V is traceable. If V is traceable of rank n then every element of End $\wedge^n V$ is scalar multiplication by a unique element of the commutative ground ring R with unit. For example, for any $A \in \coprod_p \text{End } \wedge^p V$ and each p = 0, ..., n let $(\alpha \mathbf{A})_p \in \operatorname{End} \wedge^p V$ be the p^{th} component of $\alpha \mathbf{A} \in \coprod_p \operatorname{End} \wedge^p V$. Then $(\alpha \mathbf{A})_n \in \operatorname{End} \wedge^n V$ is scalar multiplication by a unique element of R. 2.2 Definition: If V is a traceable module of rank n > 0 over a commutative ground ring R with unit, the trace of any $\mathbf{A} \in \coprod_p \operatorname{End} \wedge^p V$ is the unique element $\operatorname{tr} \mathbf{A} \in R$ such that $(\alpha \mathbf{A})_n = (\operatorname{tr} \mathbf{A})I_n \in \operatorname{End} \wedge^n V$, for the identity endomorphism $I_n \in \operatorname{End} \wedge^n V$. For example, if $A \in \operatorname{End} V$ then $(\alpha A)_n = A \cdot I_{n-1}$ for the identity endomorphism $I_{n-1} \in \operatorname{End} \wedge^{n-1} V$. One easily verifies that if V is a free R-module of rank n then the classical trace of A is precisely that element $\operatorname{tr} A \in R$ such that $A \cdot I_{n-1} = (\operatorname{tr} A)I_n \in \operatorname{End} \wedge^n V$. 2.3 Theorem. Let $\coprod_p \operatorname{End} \wedge^p V$ be the endomorphism algebra generated by the endomorphisms of a traceable module V, multiplication being the third product; then the trace is an algebra homomorphism $\coprod_p \operatorname{End} \wedge^p V \stackrel{\operatorname{tr}}{\to} R$ over the ground ring R. Specifically, both $\operatorname{tr}(\mathbf{A} + \mathbf{B}) = \operatorname{tr} \mathbf{A} + \operatorname{tr} \mathbf{B}$ and $\operatorname{tr}(\mathbf{A} \times \mathbf{B}) = (\operatorname{tr} \mathbf{A}) (\operatorname{tr} \mathbf{B})$ for any elements \mathbf{A} and \mathbf{B} of $\coprod_p \operatorname{End} \wedge^p V$. *Proof.* Additivity of the trace is trivial. To show that the trace also respects the third product suppose that V is traceable of rank n, and let $(\alpha \mathbf{A})_p$, $(\alpha \mathbf{B})_p$ and $\alpha(\mathbf{A} \times \mathbf{B})_p$ denote the components of $\alpha \mathbf{A}$, $\alpha \mathbf{B}$ and $\alpha(\mathbf{A} \times \mathbf{B})$ in End $\wedge^p V$ for each p = 0, ..., n. By the definition $\mathbf{A} \times \mathbf{B} = \alpha^{-1}((\alpha \mathbf{A})(\alpha \mathbf{B}))$ of the third product one has $\alpha(\mathbf{A} \times \mathbf{B}) = (\alpha \mathbf{A})(\alpha \mathbf{B})$ for the composition product $(\alpha \mathbf{A})(\alpha \mathbf{B})$, that is, $\coprod_p \alpha(\mathbf{A} \times \mathbf{B})_p = \coprod_p (\alpha \mathbf{A})_p (\alpha \mathbf{B})_p$. In particular $\alpha(\mathbf{A} \times \mathbf{B})_n = (\alpha \mathbf{A})_n (\alpha \mathbf{B})_n$ in the n^{th} component End $\wedge^n V$, so that $$\operatorname{tr}(\mathbf{A} \times \mathbf{B})I_n = ((\operatorname{tr} \mathbf{A})I_n)((\operatorname{tr} \mathbf{B})I_n) = (\operatorname{tr} \mathbf{A})(\operatorname{tr} \mathbf{B})I_n$$ by definition of the trace; since End $\wedge^n V$ is free on the single generator I_n this implies $tr(\mathbf{A} \times \mathbf{B}) = (tr \mathbf{A}) (tr \mathbf{B})$ as claimed. # 3. Properties of the third product We now establish several properties of the third product. Although these properties do not require the R-module V to be traceable, we shall later impose a condition on elements of the R-module Π , End $\wedge^r V$ itself; the condition will automatically be satisfied in the applications. Let V be any module over a commutative ring R with unit, and let A and B be elements of the direct product Π_r End $\wedge^r V$ whose only