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222 A. HILDEBRAND

then

MAT ±5)
M5)

and N/5 4n/5 e In is good. We may therefore suppose that at least one of
values MAC+ 5) and MAC —5) equals 1.

For definiteness we shall assume X(N + 5) 1 ; the other case is treated in
exactly the same way.

If MAC+ 3) 1 or MAC+ 6) 1, then AC + 4 e In or AC + 5 e In is good.
But in the remaining case

we have

so that (AC + 3)/3 e In is good.
Thus (3) implies the existence of a good integer in the interval (4),

as we had to show.

So far we have proved that (1) has infinitely many solutions in the cases

£i s2 s3 =: 1 and Si 82 e3 — 1. But this obviously implies that
for each of the triples (e1? e2, e3) (1,1, —1), (-1, —1,1), (1, —1, —1) and

(—1,1,1) there are also infinitely many solutions to (1). It remains therefore
to consider the triples (1,-1,1) and (-1,1,-1). Since the arguments
in both cases are the same (with +1 and —1 interchanged), we shall
confine ourselves to the case (e1, e2, s3) (1, — 1,1). Accordingly, we call
n ^ 2 good, whenever

We have to show that there are infinitely many such n.

Suppose, to get a contradiction, that there are only finitely many
good integers, all of them < AC0, say. Suppose further that

MAC+ 3) MAC+ 6) -1

4. Proof of the Theorem, conclusion

Mrc + 1) Mn — 1) 1, Mn) — 1.

(5) Mn) 1 (m0^n<n0)

holds for some integers n0 > m0 ^ 2N0 .We shall show that then
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(6) Mn) 1

holds for all i > 0, where mf and rc£ are defined inductively by

(7) THi+l
3mf + 1

1

3n,-
(i^O).

This will easily lead to the desired contradiction.

By our assumption (5), (6) holds for i 0. Assume now that (6) does

not hold for all i > 0, and let î > 0 be minimal such that (6) holds for i

and fails for i + 1. Thus, for some n e [mi+1, ni+1], which we shall fix,

we have X(n) — 1. Write

(8)

From (7) we get

so that

2n 3ri + 0(0e{O,1, -1}).

3mi ^ 2mf+1 ^ 2n ^ 2ni+1 ^ 3n£.

m,- ^ n' ^ m,

and hence by (6) (which we assumed to hold for i)

X(3n') -^n') - 1

Since, by our assumption X(n) — 1,

7J(2n) - Un) 1,

we cannot have 0 0 in (8). The arguments in the cases 0 ± 1 being

identical, we shall henceforth assume that (8) holds with 0 1.

We must have

7d(2(n— 1)) M3n'-1) - 1,

since otherwise 3n' would be good and

3n' ^ 3mi ^ 3m0 > N0,

in contradiction to our assumption. Also, since

mi ^ ri + 1 -fa+1) < | -[I*»,« +i)
3«;

+ 1 < nt,

we have by (6)

X(2(n+1)) l(3(ri +1)) - Mn' + l) - 1.
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These two identities imply

Hn±l) - k(2(n±l)) 1,

and since X(ri) — 1, we conclude that n(>N0) is good and therefore arrive
at a contradiction.

Thus (5) (with n0>m0^2N0) implies (6) for all i ^ 0. To derive from
this the desired contradiction, we suppose first that (5) holds for some

n0 > m0 ^ 2N0 satisfying

(9) n0 - m0> 3

In other words, we suppose (for the moment) that there exist four consecutive

integers n ^ 2N0, for which X(n) 1. Putting dt rii — mi9 we have, by
the recursion formulae (7),

3 3 2\ (iS0)'

Taking into account (9), we obtain by induction in turn

3 0> 0),

d,>3 ß) 0>0),

and finally

where

c-nH(0>°-
Since on the other hand by (7)

di<nt < ^ n0 0>0),

we see from (6), that there are arbitrary large values of x, such that
k(n) is constant in the interval [x(l — s), x], where s C/n0. But this is

impossible since, for x sufficiently large, every such interval contains integers n

and n' of the form
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n 4"9b,ri 2- b, c, N),

for which

7(n) 1, Un') - 1.

We therefore have obtained the desired contradiction under the assumption

that there exist four consecutive integers n > 2iV0, for which Un) 1.

By the part of the theorem already proved, there exist at least three such

integers. Therefore (5) holds for some m0 > 2N0with n0 + 2, and we

may now assume that

7(m0-1) Umo+ 3) - 1
•

If m0 is odd, then this implies

>

so that (m0 + l)/2 > N0 is good, in contradiction to our assumption. But if

m0 is even, then defining m1 and n1 by (7), (6) holds for i 1, and

we have

3(m0 + 2) 3
_m1^ 2^0,«! - m1 ^

Thus we are back in the case already treated.

By contradiction, we therefore conclude that (1) has infinitely many

solutions for (e^Sj.Ss) (1,-1,1), and the proof of the theorem is

complete.

> 5. Concluding remarks

In the foregoing proof) the relevant property of the Liouville function

:i was that X(n) is completely multiplicative and assumes only the values ± 1.

5 Besides this, we used only the fact that U2) 7,(3) 715) 1 and

(in the proof of the lemma)

7(14) 7(16) 1, 7(29) 7(31) - 1.

The proof, as it stands, works for any completely multiplicative function

f(ri) ± 1 with these properties. By suitably modifying the proof, it is

possible to cover other classes of multiplicative functions as well.
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