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9.4. Noting that any nowhere dense closed analytic subset of a Lagrangean

variety is never involutive, Theorem 9.2.3 implies the following theorem.

Theorem 9.4.1. Let M be a holonomic Sx-module. Then the following

conditions are equivalent.

(i) There exists a Lagrangean subvariety A such that Jt has regular

singularities along A.

(ii) For any involutive subvariety A which contains Supp Jt, Jt has

regular singularities along A.

(iii) There exists an open dense subset Q of Supp Jt such that Jt
has regular singularities along Supp Jt on Q.

If these equivalent conditions are satisfied, we say that Jt is a regular

holonomic ^-module.

The following properties are almost immediate.

Theorem 9.4.2.

(i) Let 0 Jt' -> Jt - Jt" - 0 be an exact sequence of three coherent

ix-modules. If two of them are regular holonomic then so is the third.

(ii) If Jt is regular holonomic, its dual Jt* is also regular holonomic.

We just mention another analytic property of regular holonomic modules,

which generalizes the fact that a formal solution of an ordinary differential
I equation with regular singularity converges.

Theorem 9.4.3 ([KK] Theorem 6.1.3). If Jt and Jf are regular

; holonomic Sx-modules, then Sxt^x(Jt, JT) —• S'xt^x{Jt, $x ® Jt") and
l Sx

J ixt'gSM, JT) -» SxtJgx(J(, <g> Jf\areisomorphisms.
Sx

§ 10. Structure of Regular Holonomic ^-Modules
(See [SKK], [KK])

j 10.1. Let A be a Lagrangean submanifold of T*X. We define /A and

I iA as in § 9.2.
I Then 1) 1) is a two-sided ideal of and

is a sheaf of rings which contains 0A(O) ^(0)/</A(—1), the sheaf of

homogeneous functions on A.
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Let us take an invertible 0A-module if such that if®2 coA ® cof-1.
Ox

Such an ££ exists at least locally. For F Fj(x, d) + P0(x, d) + e /we define, for <p e (9Kandan invertible section s of

1 Lhp (s®2®d/ im M - {»„M + 5,-^r + {p.-2155Ê).
Here dx dx1 A A dxn e <% and s®2 ® dx is regarded as a section
of coA. The Lie derivative LHp of HPi operates on coA as the first order

differential operators so that LHp (s®2®dx) is a section of coA and

Lfl. (s®2<g)dx)/s®2 ® dx is a function on A.
M
We thus obtain L. fA $ndc(££). Then this does not depend on the

choice of local coordinate system and moreover it extends to the ring
homomorphism L: SA - <fndc(if). Since the image is contained in the
differential endomorphism of if, we obtain the ring homomorphism
L:SA if ® ^A <g> if®"1.

®A <?A

Proposition 10.1.1. Py L,SA/SA{ — 1) coincides with the subsheaf of
& ® ® 3?®1 consisting of differential endomorphisms of if homo-

0A ®A

geneous of degree 0.

If we take

/a e 3) + ffolX d) + —

such that d$x —Qx mod Ijfl1 and

2S&A 8»("'0mOd-'*

then L(ff) gives the Euler operator of if. Such a 0 is unique modulo

/a(-1) ^A(-I) n <?x(l).

10.2. Let J be a regular holonomic ^-module whose support is A.
Let Ji0 be a coherent sub-<^A-module of M which generates M. Such an
J(q is called a saturated lattice of M. Then Ji is an
SJSA( — l)-module, which is coherent over 0A(O).

Since a coherent sheaf with integrable connection is locally free, we have

Lemma 10.2.1. M is a locally free (9A(0)-module offinite rank.
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Since & belongs to the center of D, » can be considered as an

endomorphism of which is a locally constant shea

on A. Its eigenvalues are called the order of M with respect to Jt*.

10.3. Let us take a section G c C of C -» C/Z. Then there exists a unique

saturated lattice Jt0such that the orders of M with respect t0 Jf°
contained in G (See [K4]). Then

and

M exp 2tcî0 g séut{f)

does not depend on the choice of G.

Theorem 10.3.1 ([KK] Chapter I, §3). Assume that there exists an

invertible &A-modulei?suchthat if®2 coA ® cof '1. Then the

category of regular holonomic Sx-modules with support in A is equivalent

to the category of {&,AO'swhere & is a locally constant démodule

and M e séutçffF\

10.4. If u g Jt then the solution to L(P)(p 0 for with Pu 0

is called a principal symbol of u and denoted by a(w). The homogeneous

degree of a(u) is called the order of u. In the terminology of § 10.2, the

principal symbol is a section of Afomg^g^-ijßAu/SA{— l)u, and the

order is the eigenvalue of 0 in omgAjgA<< - Au/$A( — 1 )u,
I

I 10.4. When the characteristic variety is not smooth, we don't know much
1

about the structure of holonomic systems. In this direction, we have

Theorem 10.4.1 ([K-K] Theorem 1.2.2). Let Z be a closed analytic
1 subset of an open subset Q of T*X, n dim X, and let and AT

be holonomic Sx\ ^-modules.

(i) If dim Z ^ n — 1, then

T(Q; XeomgfJl, Af)) T(Q\Z, 3fomgx(Jt9 AT))

is injective.

j (ii) If dim Z < n — 2, then

T(Q; XeomsfJl, AT)) - T(Q\Z ; omêx(Jt9 AT))
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is an isomorphism.
In particular if Supp M c= A1 u A2 and if dim (A^AJ < n-2, £/zezz

^ 0 direct sum of two holonomic Sx-modules supported on A1 and
A2, respectively.

Here is another type of theorem.

Theorem 10.4.3 ([SKKO]). Let M Su S/ß he a holonomic
S-module defined on a neighborhood of p e T*X. Assume Supp M

Ax u A2 and

(i) Al9 A2 and AxnA2 are non-singular and dim Ax dim A2
n, dim (A1nA2) n— 1.

(ii) Tp, Ai Pi 7V A2 T^AinAJ for any p' in a neighborhood of p in
A1 n A2.

(iii) 77ze symbol ideal of ß coincides with the ideal of functions vanishing
on A1 uA2.

Setting k ordAlu — ordA2w — 1/2, we have

(a) Jt has a non-zero quotient supported on A Jt has a non-zero
submodule supported on A2 o k e Z.

(b) Mv is a simple Sp-module ok$ Z.

Sketch of the proof. By a quantized contact transformation, we can
transform p, Ax, A2 and / as follows:

p (0, dxj
Ai {(x, Q;x1 £,2 ». L 0}

A2 {(x, £); Xi x2 ^3 ^ 0} *

jf ^(x^É^ À,) + S{x2d2— p) ~f~ y d,•

i>2

In this case, we can easily check the theorem.

§11. Application to the ^-function (see [SKKO])

11.1. As one of the most successful application of microlocal analysis,
we shall sketch here how to calculate the h-function of a function under
certain conditions.
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