§1. Geometry and combinatorics

Objekttyp: Chapter

Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 32 (1986)
Heft 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

PDF erstellt am:
13.07.2024

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Corollary 5 in §1) which hold for reflection groups in general as was demonstrated by Davis [3] (see also [18]).

The proofs of these general properties in the literature depend on the particular type of the reflection groups considered. The best known proofs are those in [2] for the linear (or affine) reflection groups acting properly discontinuously on the whole space, and Davis [3] adapted them to the general case of topological reflection groups.

The purpose of this paper is to supply geometric proofs of the basic properties of general reflection groups as opposed to adapting the formal arguments of [2]. For simplicity of exposition we assume in the paper that M is a differentiable (actually C^{1}) manifold and that the group action is C^{1}. Extension to the topological manifolds does not require new ideas and is left to the reader.

The rationale for this paper is twofold. First, the basic properties of reflection groups are stated (and proved) here in a form particularly useful for applications (cf. [5], [9], [11]). Second and more important, the simplicity of the geometric proofs presented here will make the subject more accessible to the general mathematical public.

In conclusion let me mention that reflection groups that do not act properly discontinuously are also useful (cf. [19], [4], [8]) but the results of the paper do not extend to them.

I would like to thank Mike Davis and the referee for pointing out an error in the original version of the paper. ${ }^{1}$)

§ 1. Geometry and combinatorics

Throughout the paper M is a connected differentiable manifold (possibly with boundary).

Definition 1. A reflection of M is a diffeomorphism s such that $s^{2}=1$ and the set M_{s} of fixed points of s has codimension 1. A reflection s is called separating if $M \backslash M_{s}$ is disconnected. A reflection group W acting on M is a discrete group of diffeomorphisms of M generated by separating reflections.

[^0]Lemma 1. Let s be a reflection of M. Then $M \backslash M_{s}$ has at most two connected components.

Proof. Let $x_{0}, x_{1} \in M \backslash M_{s}$ and let $x(t)$ be a continuous path joining them. We can assume without loss of generality that $x(t)$ is piecewise differentiable and that it intersects M_{s} transversally. Let $x\left(t_{1}\right), \ldots, x\left(t_{N}\right)$ be the points of intersection. Consider the new path $\tilde{x}(t)$ where

$$
\begin{gathered}
\tilde{x}(t)=x(t), \quad 0 \leqslant t \leqslant t_{1}, \quad \tilde{x}(t)=s x(t), \quad t_{1} \leqslant t \leqslant t_{2}, \\
\tilde{x}(t)=x(t), \quad t_{2} \leqslant t \leqslant t_{3}, \text { etc. }
\end{gathered}
$$

(see fig. 1). Deform the path $\tilde{x}(t)$ slightly in small neighborhoods of $x\left(t_{1}\right), \ldots, x\left(t_{N}\right)$ to make it come off M_{s} (if $\tilde{x}(t)$ does not cross M_{s} at t_{i}).

Figure 1
$M \backslash M_{s}$ has at most two connected components
The resulting path $x^{\prime}(t)$ does not intersect M_{s} at all if N is even and intersects M_{s} only at $x\left(t_{N}\right)$ is N is odd. Thus any $x, y \in M \backslash M_{s}$ can be joined by a continuous path intersecting M_{s} at most once.

Assume that $M \backslash M_{s}$ has three connected components X, Y, Z and choose points x, y, z in X, Y, Z respectively. Then there are paths $\gamma, \tilde{\gamma}$ from x to y
and from y to z respectively intersecting M_{s} once. The path $\tilde{\gamma} \gamma$ goes from x to z and intersects M_{s} twice. By previous argument we can find another path γ^{\prime} from x to z that does not intersect M_{s} at all. This contradiction proves the Lemma.

Corollary 0. Let $M \backslash M_{s}$ be disconnected and let $x, y \in M \backslash M_{s}$. Let γ be a continuous path in M joining x with y and intersecting M_{s} transversally. Then x, y belong to the same component of $M \backslash M_{s}$ if and only if γ intersects $\quad M_{s}$ an even number of times.

Proof. Let γ intersect $M_{s} N$ times. By the argument of Lemma 1, we can find another path γ^{\prime} from x to y that intersects M_{s} once if N is odd and does not intersect M_{s} if N is even. Thus it suffices to prove that if γ joining x with y intersects M_{s} once then x and y belong to different connected components of $M \backslash M_{s}$. Assume the opposite and let z belong to the other component. Then there is a path $\tilde{\gamma}$ from y to z intersecting M_{s} once. The composition $\tilde{\gamma} \gamma$ joints points in different connected components of $M \backslash M_{s}$ and intersects M_{s} twice. By the argument of Lemma 1, this is impossible.

Denote by M / s the quotient of M by the action of s endowed with the natural topology.

Proposition 1. Let s be a reflection of M.

(i) Assume that s is separating. Then M is orientable if and only if M / s is.
(ii) Assume that s is not separating. If M is orientable then M / s is not orientable.

Proof. Let X be a connected manifold with the boundary $\partial X \neq \phi$. Define the doubling $d X$ of X as the manifold obtained by gluing two copies of X along the common boundary. Clearly $d X$ is orientable if and only if X is.

Let M_{s} separate M and let X_{0}, Y_{0} be the connected components of $M \backslash M_{s}$. Let $X=X_{0} \bigcup M_{s}, Y=Y_{0} \bigcup M_{s}$ be their closures in M. Then $s: X \rightarrow Y$ is a diffeomorphism which identifies X, Y with M / s and M with $d X$. This proves (i).
(ii) Let $x \in M$ be sufficiently close to M_{s}. Then x and $s x$ belong to the same open ball in M and we orient the tangent spaces at x and $s x$ simultaneously. Let γ be a continuous path in $M \backslash M_{s}$ from x to $s x$. Since M
is orientable, moving along γ does not change the orientation. Since s reverses the orientation, moving along the loop $p \gamma$ in the quotient $p: M \rightarrow M / s$ we come back to $p x$ with the orientation reversed.

Examples. 1. Let $M=S^{1} \times S^{1}$ be the twodimensional torus and let s be the reflection about the diagonal (see fig. 2, a)). Then M / s is the Moebius band.

a) $M=S^{\prime} \times S^{\prime}$

b) $\quad M=$ Moebius band

$M / s=$ cylinder

Figure 2
2. Let s be the reflection of the Moebius band M about the midline (see fig. 2, b)). Then M / s is the cylinder.

Remark. Proposition 1, (ii) shows that if s is not separating then M and M / s can not be both orientable. The following example shows that M and M / s can be both nonorientable.
3. Let M be the product of two Moebius bands and let s be the product of the reflection in midline (Example 2) and the identity map. Then M / s is the product of the cylinder and the Moebius band. Thus s does not separate M and both M and M / s are not orientable.

Corollary 1. If M is simply connected then any reflection s of M is separating.

Proof. Since s has fixed points, M / s is simply connected, thus orientable. If s is not separating then, by Proposition 1, (ii), M is not orientable, contrary to the assumption.

In the rest of the paper we consider only separating reflections and groups generated by them. By Corollary 1 , if M is simply connected (which holds in many applications) then the assumption is automatically satisfied.

Let us establish some terminology. The closures $M_{s}^{\varepsilon}, \varepsilon= \pm 1$, of connected components of $M \backslash M_{s}$ are the two halfspaces corresponding to s. If $A \subset M$ intersects only one connected component of $M \backslash M_{s}$ we denote the corresponding halfspace by $M_{s}(A)^{+}$and the other one by $M_{s}(A)^{-}$.

Let W be a reflection group acting on M and let $R \subset W$ be the set of reflections in W. The sets $M_{s}, s \in R$ are called the (reflecting) walls of M and the closures of connected components of $M_{\mathrm{reg}}=M \backslash \bigcup_{s \in R} M_{s}$ are the chambers of $M . M_{\text {reg }}$ is the set of regular points of M. Since a wall M_{s} defines s uniquely, we identify R with the set of walls of M. Points $x \in M$ that belong to no more than one wall are the semiregular points of M. The walls of a chamber C are such M_{s} that $\operatorname{dim}\left(M_{s} \cap C\right)=n-1$, their intersections with C are the faces of C. Walls of C correspond to a subset $S_{C} \subset R$. Nonempty intersections of faces of C are the facets of C.

Two chambers $C \neq D$ are adjacent if they have a common face. Let M_{r} be the unique wall containing this face, then $D=r C^{\circ}$. A sequence $C_{0}, C_{1}, \ldots, C_{N}$ of chambers is a gallery (of length $-N$, going from C_{0} to C_{N}) if for $i=1, \ldots, N$ the chambers C_{i-1} and C_{i} are adjacent. The sequence $\left(r_{1}, \ldots, r_{N}\right)$ of reflections defined by $C_{i}=r_{i} C_{i-1}$ is called the reflection sequence corresponding to the gallery C_{0}, \ldots, C_{N}. A gallery C_{0}, \ldots, C_{N} crosses M_{r} if r is contained in the corresponding sequence $\left(r_{1}, \ldots, r_{N}\right)$. A minimal gallery going from C to D is a gallery of minimal length which is by definition the distance $d(C, D)$ between C and D. A wall M_{r} separates chambers C and D if $C \subset M_{r}^{\varepsilon}$ and $D \subset M_{r}^{-\varepsilon}$. Denote by $R(C, D) \subset R$ the set of walls separating C from D. The group W acts on R by conjugations $r \rightarrow g r g^{-1}$ which we denote for brevity by $g \cdot r$. Then $g M_{r}^{\varepsilon}=M_{g \cdot r}^{\delta}, \varepsilon, \delta= \pm 1$.

Proposition 2. Let $C=C_{0}, C_{1}, \ldots, C_{N}=D$ be a gallery and let $\left(r_{1}, \ldots, r_{N}\right)$ be the corresponding sequence of reflections.
(i) The set of reflections r contained in $\left(r_{1}, \ldots, r_{N}\right)$ an odd number of times is $R(C, D)$.
(ii) The following assertions are equivalent:
a) gallery C_{0}, \ldots, C_{N} is minimal;
b) $d\left(C_{i}, C_{j}\right)=|i-j|$ for any $i, j=0, \ldots, N$;
c) there are no repetitions in the sequence $\left(r_{1}, \ldots, r_{N}\right)$.

Proof. A differentiable path $\{x(t): 0 \leqslant t \leqslant 1\}$ on M is called regular if for all but a finite number $0<t_{1}<\ldots<t_{N}<1$ of moments of time $x(t)$ is regular, $x\left(t_{i}\right)$ is semiregular for $i=1, \ldots, N$ and the curve $x(t)$ is transversal to the set $\bigcup_{s \in R} M_{s}$. Then for $t \neq t_{1}, \ldots, t_{N} x(t)$ belongs to a unique chamber and the sequence C_{0}, \ldots, C_{N} thus defined is a gallery with t_{i}

Figure 3
To the proof of Proposition 2. Galleries and paths along them
being the moment of time when $x(t)$ crosses from C_{i-1} to C_{i}. We say that C_{0}, \ldots, C_{N} is the gallery along the path $\{x(t)\}$. Given a gallery C_{0}, \ldots, C_{N} there is always a regular path $\{x(t)\}$ such that C_{0}, \ldots, C_{N} is the gallery along it. We say that $\{x(t)\}$ goes along the gallery.

Let C_{0}, \ldots, C_{N} be a gallery going from $C=C_{0}$ to $D=C_{N}$ and let $\{x(t)\}$ be a regular path along it. For any $r \in R$ let $t_{i_{1}}<\ldots<t_{i_{N(r)}}$ be the consecutive moments of time when $\{x(t)\}$ intersects M_{r}. By Corollary $0, N(r)$ is even (resp. odd) if and only if $r \notin R(C, D)$ (resp. $r \in R(C, D)$) which proves (i). Assertions a) and b) of (ii) are obviously equivalent. By (i) every $r \in R(C, D)$ is contained in $\left(r_{1}, \ldots, r_{N}\right)$ at least once, thus $N \geqslant|R(C, D)|$. Assume that $N>|R(C, D)|$. Then either there is $r \notin R(C, D)$ that occurs in $\left(r_{1}, \ldots, r_{N}\right)$ (necessarily an even number of times) or there is $r \in R(C, D)$ that occurs in $\left(r_{1}, \ldots, r_{N}\right)$ more than once. Assume the first possibility and let r occur $2 m$ times in $\left(r_{1}, \ldots, r_{N}\right)$. Using the proof of Lemma 1 we construct a new regular path $\left\{x^{\prime}(t)\right\}$ which joins $x(0)$ with $x(1)$ and does not cross M_{r} at all (see fig. 3, a)). The gallery along $\left\{x^{\prime}(t)\right\}$ has $N+1-2 m$ chambers and does not cross M_{r}. Analogous argument shows that if there is $r \in R(C, D)$ that occurs $2 m+1>1$ times in $\left(r_{1}, \ldots, r_{N}\right)$ then there is a new gallery from C to D which is by $2 m$ shorter then C_{0}, \ldots, C_{N} and crosses M_{r} once (see fig. 3, b)). Thus the sequence $\left(r_{1}, \ldots, r_{N}\right)$ corresponding to a minimal gallery can contain only $r \in R(C, D)$ and no more than once. On the other hand by (i), it must contain every $r \in R(C, D)$ at least once. This proves the Proposition and the following.

Corollary 2. 1) A gallery $C=C_{0}, \ldots, C_{N}=D$ is minimal if and only if $\quad N=|R(C, D)|$. Thus $\quad d(C, D)=|R(C, D)|$. 2) For any gallery $C=C_{0}, \ldots, C_{N}=D,(-)^{N}=(-)^{d(C, D)}$.

Corollary 3. Let $D \neq C$ be two chambers, let M_{s} (resp. M_{r}) be a wall of C (resp. D) such that $r, s \in R(C, D)$. Then there exists a minimal gallery $C_{0}=C, \ldots, C_{N}=D$ such that $C_{1}=s C$ and $C_{N-1}=r D$.

Proof. If $d(C, D)=1$ then $r=s$ and the assertion is trivial. If $t \in R$ and $t \neq s$ then t cannot separate $s C$ from C. If besides $t \in R(C, D)$ then C, $s C \subset M_{t}(D)^{-}$and if $t \notin R(C, D)$ then $C, s C \subset M_{t}(D)^{+}$. Therefore $R(s C, D)$ $=R(C, D) \backslash\{s\}$ and $d(s C, D)=d(C, D)-1$. This proves the assertion by induction on $d(C, D)$.

The group W naturally acts on the set of chambers of M. Choose one chamber C_{+}to be the fundamental chamber and let $S=S_{C_{+}}$be the set of reflections in the walls of C_{+}. Elements $s \in S$ are called simple reflections.

Proposition 3.

(i) W acts simply transitively on the set of chambers.
(ii) S generates W.
(iii) Any $r \in R$ is conjugate to some $s \in S$.
(iv) Let $g \in W$ and let $g=s_{1} \ldots s_{N}$ be a decomposition of g into simple reflections. Then the sequence
$C_{0}=C_{+}, C_{1}=s_{1} C_{+}, \ldots, C_{i}=s_{1} \ldots s_{i} C_{+}, \ldots, C_{N}=s_{1} \ldots s_{N} C_{+}$
is a gallery. This establishes a one to one correspondence between the words in s_{i} and galleries starting from C_{+}.

Proof. Denote $d\left(C_{+}, C\right)$ by $d(C)$ and $R\left(C_{+}, C\right)$ by $R(C)$. Let \tilde{W} be the subgroup of W generated by S. We have seen in the proof of Corollary 3 that if $d(C)>0$ then there is $r \in R(C)$ such that $d(r C)=d(C)-1$. Assuming that $r C=w C_{+}$for some $w \in \tilde{W}$ we have $r=w s w^{-1}$ for some $s \in S$, thus $r \in \tilde{W}$ and $C=r \cdot r C=r w C_{+}$where $r w \in \tilde{W}$. This proves by induction on $d(C)$ that \tilde{W} acts transitively on the set of chambers.

Let $r \in R$ and let C be such that M_{r} is a wall of C. Then there is $w \in \tilde{W}$ such that $w^{-1} C=C_{+}$thus $w^{-1} M_{r}$ is a wall of C_{+}, that is $w^{-1} M_{r}=M_{s}$ for some $s \in S$, therefore $r=w s w^{-1}$ which shows that $R \subset \tilde{W}$ and proves (iii). The group W is generated by R and $R \subset \tilde{W}$ thus $W=\tilde{W}$ which proves (ii). Let $C_{i}, i=0, \ldots, N$ be the sequence of chambers defined in (iv). Since

$$
C_{i+1}=\left(s_{1} \ldots s_{i}\right) s_{i+1}\left(s_{i} \ldots s_{1}\right) s_{1} \ldots s_{i} C_{+}=r_{i+1} C_{i}
$$

and since $r_{i+1}=\left(s_{1} \ldots s_{i}\right) s_{i+1}\left(s_{1} \ldots s_{i}\right)^{-1} \in S_{C_{i}}$ the chambers C_{i+1} and C_{i} are adjacent, thus C_{0}, \ldots, C_{N} is a gallery going from C_{+}to $g C_{+}$. Let $C_{0}=C_{+}, \ldots, C_{N}$ be any gallery and let $\left(r_{1}, \ldots, r_{N}\right)$ be the corresponding sequence of reflections. Set $g_{i}=r_{i} \ldots r_{1} i=1, \ldots, N$. Then $C_{i}=g_{i} C_{+}$and $g_{i}^{-1} r_{i+1} g_{i} \in S$ for $i=1, \ldots, N$. Denote $g_{i}^{-1} r_{i+1} g_{i}$ by s_{i+1}. Then $g_{i+1}=r_{i+1} g_{i}$ $=g_{i} s_{i+1}$ which shows by induction that $g_{i}=s_{1} \ldots s_{i}$ for $i=1, \ldots, N$. Thus the gallery C_{0}, \ldots, C_{N} corresponds to the word $s_{1} \ldots s_{i+1}$ which proves (iv). In particular, two words $s_{1} \ldots s_{N}$ and $s_{1}^{\prime} \ldots s_{M}^{\prime}$ represent the same $g \in W$ if and only if the corresponding galleries $C_{+}=C_{0}, \ldots, C_{N}$ and C_{+}
$=C_{0}^{\prime}, \ldots, C_{M}^{\prime}$ lead to he same chamber $g C_{+}=C_{N}=C_{M}^{\prime}$. Thus the mapping $g \rightarrow g C_{+}$is one to one which proves (i).

Choose a fundamental chamber C_{+}and let S be the corresponding set of simple reflections generating W. A decomposition $g=s_{1} \ldots s_{N}, s_{i} \in S$ of $g \in W$ is called minimal if it is the shortest possible. Then $N=d(g)$ is the length of g and the distance $d(g, h)$ is defined by $d(g, h)=d\left(g^{-1} h\right)$. Denote $g C_{+}$by $C_{g}, R\left(C_{g}\right)$ by $R(g)$ and $M_{r}\left(C_{+}\right)^{ \pm}$by $M_{r}^{ \pm}$respectively. Identify the set of halfspaces $M_{r}^{ \pm}$with $\hat{R}=R \times\{ \pm 1\}$ and call elements $(r, \varepsilon)=\hat{r} \in \hat{R}$ the oriented reflections. A gallery C_{0}, \ldots, C_{N} defines a sequence $\left(\hat{r_{1}}, \ldots, \hat{r}_{N}\right)$ of oriented reflections by

$$
\hat{r_{i}}=\left\{\begin{array}{lll}
\left(r_{i},+1\right) & \text { if } & C_{i} \subset M_{r}^{+} \tag{1}\\
\left(r_{i},-1\right) & \text { if } & C_{i} \subset M_{r}^{-}
\end{array}\right.
$$

Denote by $\hat{r} \rightarrow g \hat{r}$ the action of W on \hat{R} corresponding to the natural action of W on the set of halfspaces. Define a function $\operatorname{sgn}: W \times R$ $\rightarrow\{ \pm 1\}$ by

$$
\operatorname{sgn}(g, r)=\left\{\begin{array}{rr}
-1 & g \cdot r \in R(g) \tag{2}\\
1 & g \cdot r \notin R(g)
\end{array}\right.
$$

and for $\hat{r}=(r, \varepsilon)$ set $-\hat{r}=(r,-\varepsilon)$.

Corollary 4.

(i) For any $g, h \in W, d(g, h)=d\left(C_{g}, C_{h}\right)$ and $d(g)=|R(g)|$.
(ii) $R(g)=\left\{r \in R: g^{-1} M_{r}^{\varepsilon}=M_{g^{-1} \cdot r}^{-\varepsilon}\right\}$.
(iii) The action of W on \hat{R} is given by $g(r, \varepsilon)=(g \cdot r, \operatorname{sgn}(g, r) \varepsilon)$.

Proof. (i) follows from Proposition 3 and Corollary 2. Recall that $R(g)=\left\{r \in R: C_{g} \subset M_{r}^{-}\right\}$. Since $g^{-1} C_{g}=C_{+}$we have $g^{-1} M_{r}^{-}=M_{g^{-1} r}^{+}$. On the other hand if $r \notin R(g)$ then $C_{g} \subset M_{r}^{+}$therefore $g^{-1} M_{r}^{+}=M_{g-1_{r}}^{+}$ which proves (ii).
(ii) is equivalent to the assertion that $g M_{r}^{\varepsilon}=M_{g}^{-\varepsilon}{ }_{r}$ if $g \cdot r \in R(g)$ and $g M_{r}^{\varepsilon}=M_{g \cdot r}^{\varepsilon}$ if $g \cdot r \notin R(g)$ which proves (iii).

For $x \in M$ denote by $W_{x} \subset W$ the isotropy subgroup of x and by $R_{x} \subset R$ the set of $r \in R$ such that $r x=x$.

Proposition 4.

(i) Let $x, y \in C, g \in W$ and let $g x=y$. Then $x=y$ and $g \in W_{x}$.
(ii) For any $x \in M$ the group W_{x} is generated by reflections $r \in R_{x}$.

Proof. Let C, D be such chambers that $C \bigcap D \neq \phi$. Since any wall $M_{r} \in R(C, D)$ separates C from D, it contains $C \bigcap D$. A minimal gallery $C=C_{0}, \ldots, C_{N}=D$ going from C to D crosses only the walls $M_{r} \in R(C, D)$, thus every chamber C_{0}, \ldots, C_{N} contains $C \bigcap D$ and reflections of the corresponding sequence $\left(r_{1}, \ldots, r_{N}\right)$ leave $C \bigcap D$ fixed pointwise. In the notation of (i), $y \in g C \bigcap C \neq \phi$. A minimal decomposition $g=s_{1} \ldots s_{N}$ corresponds to a minimal gallery going from C to $g C$ and $g=r_{N} \ldots r_{1}$. Thus g leaves $C \bigcap g C$ pointwise fixed, so $y=x$. For $x \in M$ let C be a chamber containing x. By the same argument as above any $g \in W_{x}$ is a product of $r_{i} \in R_{x}$ which proves (ii).

Corollary 5. The natural mapping $\varphi: C_{+} \rightarrow M / W$ is an isomorphism.
Proof. By Proposition 3, (i), φ is onto. By Proposition 4, (i) φ is one to one.

For $r, s \in R$ denote by $m(s, r) \in\{1, \ldots, \infty\}$ the order of r. Since $s^{2}=1$ for any $s \in R$ we have
(i) $\quad m(s, s)=1$
(3)
(ii) $m(r, s)=m(s, r) \geqslant 2$ for $\quad r \neq s$.

Definition 2 (cf. Bourbaki [2]). A Coxeter group is a group W with a finite set S of generators and a presentation

$$
\begin{equation*}
W=<S:(s r)^{m(s, r)}=1, \quad r, s \in S> \tag{4}
\end{equation*}
$$

where the function $m: S \times S \rightarrow\{1, \ldots, \infty\}$ satisfies (i) and (ii) above.

Theorem 1. Let W be a reflection group acting on M, let C_{+}be a fundamental chamber, let $S \subset R$ be the corresponding set of simple reflections and for $s, r \in S$ let $m(s, r)$ be the order of $s r$. Then W is a Coxeter group with the presentation

$$
\begin{equation*}
W=<S:(s r)^{m(s, r)}=1>. \tag{5}
\end{equation*}
$$

Proof. If C_{0}, \ldots, C_{N} and $C_{0}^{\prime}, \ldots, C_{M}^{\prime}$ are two galleries such that $C_{0}^{\prime}=C_{N}$ we define their product by $C_{0}, \ldots, C_{N}, C_{1}^{\prime}, \ldots, C_{M}^{\prime}$. The inverse of the gallery
C_{0}, \ldots, C_{N} is by definition C_{N}, \ldots, C_{0}. A loop is a closed gallery C_{0}, \ldots, C_{N} $=C_{0}$. Any chamber of a loop can be taken for the starting chamber. If there are two loops passing through the same chamber C_{0}, we define their product based on C_{0} in an obvious way.

The dihedral group D_{m} is the Coxeter group of order $2 m$ with the presentation

$$
\begin{equation*}
D_{m}=<s, r: s^{2}=r^{2}=(s r)^{m}=1> \tag{6}
\end{equation*}
$$

It is isomorphic to the reflection group on \mathbf{R}^{2} generated by reflections s, r in two lines meeting at the angle π / m.

By Proposition 3, (iv), there is a one to one correspondence between relations $s_{1} \ldots s_{N}=1, s_{i} \in S$ and loops starting from C_{+}.

If r, s are reflections in the walls of a chamber C, the group they generate is the dihedral group $D_{m(s, r)}$ and the defining relation $(r s)^{m(r, s)}=1$ corresponds to the loop on \mathbf{R}^{2} starting at C and going around the origin visiting every chamber once (see fig. 4). Let us call such loops elementary and let us call loops of the form $C_{0}, \ldots, C_{N-1}, C_{N}, C_{N-1}, \ldots, C_{0}$ trivial.

Figure 4
Loop corresponding to the relation $(r s)^{3}=1$

The statement of the Theorem is equivalent to the assertion that every loop is a product of elementary loops and trivial loops.

Let C_{0}, \ldots, C_{N} be any gallery and set $d(C)=d\left(C, C_{0}\right)$. Then $d\left(C_{i+1}\right)$ $=d\left(C_{i}\right) \pm 1, i=0, \ldots, N-1$ and if $C_{N}=C_{0}$, the graph of the function $d: i \rightarrow d\left(C_{i}\right)$ looks like graphs on fig. $\left.\left.5, \mathrm{a}\right), \mathrm{b}\right)$.

Figure 5 a), b)
Length function on loops

We call a loop perfect if it can not be decomposed into a product of shorter loops. It suffices to prove the assertion for perfect loops.

Assume that the function d has more than one local maximum. Thus $d\left(C_{i}\right)$ increases until $i=n_{1}, d\left(n_{1}\right)=n_{1}$, then decreases to a local minimum at $i=m_{1}>n_{1}, d\left(m_{1}\right)=n_{1}-\left(m_{1}-n_{1}\right)=2 n_{1}-m_{1}$, then starts increasing again. Let $C_{0}, C_{1}^{\prime}, \ldots, C_{2 n_{1}-m_{1}}^{\prime}=C_{m_{1}}$ be a minimal gallery going from C_{0} to $C_{m_{1}}$. Then the original loop is the product of two loops

$$
C_{0}, \ldots, C_{n_{1}}, \ldots, C_{m_{1}}=C_{2 n_{1}-m_{1}}, C_{2 n_{1}-m_{1}-1}^{\prime}, \ldots, C_{1}^{\prime}, C_{0}
$$

and

$$
C_{0}, C_{1}^{\prime}, \ldots, C_{2 n_{1}-m_{1}}^{\prime}=C_{m_{1}}, C_{m_{1}+1}, \ldots, C_{N}=C_{0}
$$

Each of them is shorter than the original one. Indeed, since the length of a loop is even, $N=2 M$ and $n_{1}<M$ (see fig. 4, a)). The length of the first loop is $2 n_{1}<2 M$ and the length of the second is $\left(2 n_{1}-m_{1}\right)+\left(N-m_{1}\right)$ $=N+2\left(n_{1}-m_{1}\right)<N$.

Thus the length function on a perfect loop must have a graph like one on fig. 4, b) no matter which chamber is used as a starting chamber.

Let $C_{0}, \ldots, C_{2 m}=C_{0}$ be a perfect loop and let $\left(r_{1}, \ldots, r_{2 m}\right)$ be the corresponding reflection sequence. Since every subgallery of length m is
minimal, any reflection r that occurs in ($r_{1}, \ldots, r_{2 m}$) occurs twice. Moreover these m distinct reflections must occur in the order $r_{1}, \ldots, r_{m}, r_{1}, \ldots, r_{m}$ (see Proposition 2, (ii)). It is convenient to arrange the sequence $r_{1}, \ldots, r_{m}, r_{1}, \ldots, r_{m}$ as a circle (see fig. 6). Then it becomes clear that it does not matter which chamber is taken for the starting chamber and that a half of the sequence determines the other half.

Figure 6
Reflection sequence of a perfect loop

The relation corresponding to a perfect loop has the form

$$
\begin{equation*}
\left(r_{m} \ldots r_{1}\right)^{2}=1 . \tag{6}
\end{equation*}
$$

Let $C_{0}, \ldots, C_{n}, n \leqslant m$ be a subgallery of a perfect loop and assume that there is another minimal gallery $C_{0}, C_{1}^{\prime}, \ldots, C_{n-1}^{\prime}, C_{n}$ going from C_{0} to C_{n} (and different from $C_{0}, C_{2 m-1}, \ldots, C_{m+1}, C_{m}$ if $n=m$). Our loop is then the product of two loops

$$
C_{0}, \ldots, C_{n}, C_{n-1}^{\prime}, \ldots, C_{1}^{\prime}, C_{0} \quad \text { and } \quad C_{0}, C_{1}^{\prime}, \ldots, C_{n-1}^{\prime}, C_{n}, C_{n+1}^{*}, \ldots, C_{0}
$$

In the reflection sequence corresponding to the second loop the last m reflections are r_{1}, \ldots, r_{m} but the first m are not r_{1}, \ldots, r_{m}. So it is not perfect therefore the original loop was not perfect.

The argument above shows that every subgallery C_{0}, \ldots, C_{m-1} of length $m-1$ of a perfect loop of length $2 m$ is unique, i.e. there is no other minimal gallery going from C_{0} to C_{m-1} and the only other minimal gallery leading from C_{0} to C_{m} is the other half of the loop.

Write $r_{m} \ldots r_{1}$ as a product $s_{1} \ldots s_{m}$ of simple reflections. The word

$$
\begin{equation*}
s_{1} \ldots s_{m} s_{1} \ldots s_{m}=1 \tag{7}
\end{equation*}
$$

has the cyclic property that $s_{i}=s_{m+i}$. Assume that the sequence s_{1}, \ldots, s_{m} contains three distinct reflections. Then we can rewrite (7) as

$$
\begin{equation*}
s_{3} s_{1} s_{2} \ldots s_{m-1} s_{3} s_{1} s_{2} \ldots s_{m-1}=1 \tag{8}
\end{equation*}
$$

where $s_{3} \neq s_{1} \neq s_{2}$. We will use the following
Lemma 2 (compare with Bourbaki [2], ch. IV, § 1, Lemma 3). If a word $s_{1} \ldots s_{n}$ is minimal and the word $s_{1} \ldots s_{n} s$ is not $(s \in S)$ then there is $1 \leqslant i \leqslant n$ such that

$$
\begin{equation*}
s_{i+1} \ldots s_{n} s=s_{i} s_{i+1} \ldots s_{n} \tag{9}
\end{equation*}
$$

Proof of the Lemma. Let $1 \leqslant i \leqslant n$ be the maximal index such that $s_{i+1} \ldots s_{n} s$ is minimal and $s_{i} s_{i+1} \ldots s_{n} s$ is not. Consider the gallery C_{i}, $C_{i+1}, \ldots, C_{n}, C$ corresponding by Proposition 1, (iv) to $s_{i} \ldots s_{n} s$ and let r_{i}, \ldots, r_{n}, r be the corresponding sequence of reflections. Since the gallery $C_{i}, C_{i+1}, \ldots, C_{n}, C$ is not minimal and every subgallery of it is minimal, by Proposition $2, r_{i} \neq r_{i+1} \neq \ldots \neq r_{n}$ and $r=r_{i}$. Thus $s_{i} s_{i+1} \ldots s_{n} s s_{n} \ldots s_{i+1} s_{i}=s_{i}$ which implies $s_{i+1} \ldots s_{n} s=s_{i} s_{i+1} \ldots s_{n}$ and proves the Lemma.

The word $s_{3} s_{1} s_{2} \ldots s_{m-1} s_{3}$ is not minimal and every subword of it is minimal, therefore, by Lemma 2,

$$
\begin{equation*}
s_{1} s_{2} \ldots s_{m-1} s_{3}=s_{3} s_{1} s_{2} \ldots s_{m-1} \tag{10}
\end{equation*}
$$

that is s_{3} commutes with $s_{1} s_{2} \ldots s_{m-1}$. This produces two relations

$$
\begin{equation*}
s_{1} s_{2} \ldots s_{m-1} s_{3}=s_{3} s_{1} s_{2} \ldots s_{m-1}=s_{m-1} \ldots s_{2} s_{1} s_{3} \tag{11}
\end{equation*}
$$

corresponding to three different galleries going from C_{0} to C_{m} which contradicts to the assumption that the loop $C_{0}, \ldots, C_{2 m}$ is perfect.

Thus (7) contains only two reflections s_{1} and s_{2}, i.e. it has the form

$$
\begin{equation*}
\left(s_{1} s_{2}\right)^{m}=1 \tag{12}
\end{equation*}
$$

which is one of the defining relations of the Coxeter group. This completes the proof of the Theorem.

[^0]: ${ }^{1}$) I. N. Bernstein told me that E. B. Vinberg has an unpublished manuscript on reflection groups which is similar to this one.

