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RADICALS AND HILBERT NULLSTELLENSATZ
FOR NOT NECESSARILY ALGEBRAICALLY CLOSED FIELDS

by Dan Laksov

§ 1. The main result and definitions

We shall in the following fix a (commutative) field k and denote by k

the algebraic closure of k. Moreover, we shall denote by K a subfield of k

containing k. The polynomial ring k[xl9 x2,xr~] in r variables over k

we denote by R. Given an ideal I in R, we denote by ZK(I) the algebraic

subset of the r-dimensional affine space A^ which consists of the common

zeroes of the polynomials in I. That is

ZK(f) {(fli, a2,ar) \ate K for i 1, 2,r
and f(a1, a2 ar) — 0 for all / e 1}

The Hilbert Nullstellensatz is usually stated as follows :

Given an ideal I in R and a polynomial f of R, then f
vanishes at all points of Zff) if and only if fneR for some positive

integer n.

In symbols the Hilbert Nullstellensatz can be written in the form:

V7 {feR\Z~k(f)2
Here ^fl denotes the radical of I, defined as the intersection of all prime
ideals containing I, or equivalently by

-Jl {f e R \ fn e R for some positive integer n}

As an immediate consequence of the Hilbert Nullstellensatz we obtain the

following result which is often referred to as the weak Hilbert
Nullstellensatz :

Given an ideal I in R, then I is not all of R if and only if
Zff) is non-empty.

The Hilbert Nullstellensatz is one of the fundamental algebraic tools
in geometry because it leads to a dictionary between algebraic subsets
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of A-k on the one hand and radical ideals in R on the other. In algebraic

geometry over a not-necessarily algebraically closed field K the main objects
of study are the algebraic subsets of the affine space A^. However, if K is

not algebraically closed, there always exists ideals in R with no zeroes
in ArK, Hence the above correspondence between radical ideals and algebraic
sets fails, even in the sence of the weak Nullstellensatz.

The purpose of this article is to prove a generalization of the Hilbert
Nullstellensatz which makes it possible to set up a dictionary between the

algebraic subsets of A^ on the one hand and certain ideals of R, that
we shall call K-radical, on the other.

To state our main result it is convenient to introduce the following
notation :

Let y1, y2,... be a countably infinite set of elements that are
algebraically independent over k. We denote by PK{m) the set of
homogeneous polynomials in k[yx, y2,..., ym] whose zeroes in A£, if any, are of
the form (a1, a2,... am_ l9 0). That is,

PK(m) {peklyr, y2,vm] | p is homogeneous and ZK{p) g ZK(ym)j

Let Abe a fc-algebra and I an ideal of A. We denote by the subset

{a e A I for some positive integer m there exists a polynomial p e PK(m)

and elements al9a2, am-i °f A SU°L that p(a1, a2,..., am_ 1, a) e I}.

Below we shall prove that ^1 is an ideal in A which we call the K-radical

of I. We can now state the main result of this article, which we shall refer

to as the Hilbert K-Nullstellensatz as follows :

Given an ideal I of R, then

tfî {feR\ZK(f) 2 ZK(I)}.

As an immediate consequence of the Hilbert K-Nullstellensatz we obtain the

following result which we refer to as the weak Hilbert K-Nullstellensatz :

Given an ideal I of R, then ffl is not all of T if and only if
ZK(I) is non-empty.

We observe that the Hilbert Nullstellensatz and its weak form are the

Hilbert k-Nullstellensatz and the weak Hilbert k-Nullstellensatz. Indeed, it
is clear that we have

P-k(m) {1,ym,yl,yi,...} for m 1,2.,



HILBERT NULLSTELLENSATZ 325

Hence it follows from the definition of $1 that, if K k then ffl yjl
is the usual radical of /.

A result in the direction of the Hilbert Nullstellensatz was given by

D. W. Dubois [2] and J. J. Risler [7] when k is ordered and K the real

closure of k. A similar weaker result, which is however valid for any field k,

when k K, was given by W. A. Adkins, P. Gianni and A. Tognoli [1].
We shall return to these results in § 4 and see how they relate to the results

of this article. In that section we also discuss some open problems related

to the previous work.

In the process of generalizing the Hilbert Nullstellensatz we introduce,
for each pair of fields k and K with k E K, the K-radical of an ideal in any
/c-algebra. The K-radical of ideals in R makes it possible to give a treatment
of the Nullstellensatz over an arbitrary field which is analogous to the

traditional presentation over algebraically closed fields. Most properties that
hold for the usual radical of an ideal can be seen to hold for the

K-radical and the K-radical merits some interest of its own. Below we
shall however only give those properties needed in our presentation of the
Nullstellensatz. These properties we have collected in § 2. For a more complete
treatment see Laksov [4] and [5]

The results of Dubois and Risler strongly suggest that the K-radical of
an ideal can be defined by much smaller sets of polynomials than the sets

PK(m). Restricting the set of polynomials used to define the K-radical would
be the first step towards generalizing Hilberts 17'th problem and would give
extremely interesting information about the fields involved. We shall however
show that even modest advances in this direction may be very difficult.
To be more precise we introduce, for each natural number m a set

{pe k[y1, y2,ym] | p is homogeneous and the only zero

of p in A £ is the origin}

and for any ideal I in R we define a subset IT of R by

1t {fi e R I for some positive integer m > i there exists a polynomial
P e P°K(m) and elements /,, f2, fm in R such that p(j\, f2,fm) e 1}

Then P°K(m) ç PK(m)and consequently Ir s tfï. Moreover we have that
I £ IT. The definition of IT is apparently more natural and symmetric

than that of ^/l.
An intriguing problem raised by Tognoli is :
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For which pair of fields k ç K do we have that IT for all
ideals I of R?

It was long conjectured that equality holds for all pairs of fields (at
least when the characteristics of k is zero). We shall however, in section 5,

give examples showing that one may have strict inequality IT C ffl for
the two pairs k K Z/2Z and k K Q.

Before we proceed (in § 3) to prove the Hilbert K-Nullstellensatz we shall
in § 2 collect all the results that we need about the K-radicals and the
polynomials PK(m) in the next section.

§ 2. Some properties of the K-radical

We shall denote by S(m) the polynomial ring k\_y1, y2,ymf

Lemma 1. Let p e PK(m) and q e Pk(n). For each polynomial
s s(yx, y2, -, ym + n) G S(m + ri) of degree one less than q, we have that,

r p(yi •S,y2S,ym_j • s, q(ym + 1 ,ym + 2, -, 6

Proof\ It is clear that r is a homogeneous polynomial in S(m + n).
Let (tfi, a2, am+n) e Af+ n be a zero of r. Since pePK(m), we have

that q(am + 1, am + 2,am+n) 0. However, we have that qePK(m) so that
am + n

0. Consequently r e PK(m + n) as asserted.

Proposition 2. Let A be a k-algebra and I an ideal of A. Then

the K-radical fifl of I is an ideal of A (possibly A itself) which

contains the radical of /.

Proof Since PK( 1) yït -} it is clear that the set f/1 contains

A-
Let / and g be elements in jfl. Then by the definition of the

.K-radical there are positive integers m and n, polynomials p e PK(m) and

qePK{n) and elements and glt g2,gn_ of A such that

PiA,)eland
q(9i ,92,-,dn-,9)el

Let h be an element of A and let d be the degree of p. Then we have that

P(hA,hf2 hfm_hf) h«p(fx f2 -, fm- 1 > /) 6 / •
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Consequently it follows from the definition of K-radicals that h • / g ffl.
In order to prove the Proposition it remains to prove that (f + g)e ffl.
To this end we rewrite the polynomial q{ym^g, ym + 2 * 3'm + n) in the

following form

0 I'm + 1 > j'mil ' ym + rt— 1 Ym-tn 3 m) "P 3 m^O m ; 3m- 1 > •"> Ym -f n) >

where s is a homogeneous polynomial of S(m + n) of degree one less than the

degree of q.

By Lemma 1 we have that

y — y{\'i 9 y2 5 3'm + J 1
* ^ 3 I * L« -"5 3/m—1 * rl ' 3'm + 2> •*• 3;m + n))

is in PK(m + n). However, from the above form of q(ym +1, 3'm+ 2 > ••• Ym + n) *

it follows that r can be rewritten as

Pi.Yq ' y% * 5, 3'm— 1
* ^5 3 m ' 7 ^(imrl ; 3Jm-r2 •••> )m-fn - 1 » 3'm-i-n 37m)

• t(3W2> ->3wJ »

where £(jq, y2,ym+„) is a homogeneous polynomial in S(m + n) of degree

equal to (d— 1) • deg(g).

From the latter form of r we obtain that, if we write I s{f\ gl, g2%g„),
then h r(/i, f2,/m_ i, /, g1, g2,.... 0„- i, / + 0) can be written as

ldp(fi*fz,-»,fm-i,f)
+ q(g 1 02 > -> 9n-u9)' t(fl * Î2 > -, /m- 1 5 /, 011 02 > -, 0* - 1 / + 0) *

The latter element is in I and since r e PK(m + n) it follows from the

definition of the Pi-radical that f + g e ffl, as we wanted to prove.
We shall call an ideal J of a /c-algebra A, K-radical, if ^^7 I.

The next result shows that ffî is always K-radical.

Proposition 3. Let A be a k-algebrci and I an ideal of A.

Moreover, let J fyf Then we have that f/J J.

Proof Let / be in ffj We shall prove that f e J. By definition of the
Pi-radical, there is a positive integer n, a polynomial q e Px(n) and elements

/i > /2 > - /n-1 in ^ such that

0 0(A>/2,-, /„-i,/)e J.

Now, since g g ^7, there is furthermore a positive integer n, a polynomial
p g Px(m) and elements gl9g29... 9m~ i in A such that
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p{g1,g2,-,gm_L,g)sI.
Let d be the degree of q. Then by Lemma 1 with s

~ we have that

Kyi, yi,-, ym+n)

p(yi • ydm~ \ y2 • yt~\-,ym-1 • yt~ i, - -, yJ)

is in PK(m + n). However, we have that the element

r(g1, g2,gm_ 1,1, /t, f2 ,/„_j, /)
p{d 1,92, -, 9m-1 q(flk, -,92 9m-1,9)

is in I. Hence / is in jfl Jas we wanted to prove.
As in the traditional case, one of the two assertions of the Hilbert

K-Nullstellensatz and of its weak form is easy.

Proposition 4. Let I be an ideal of R and J ffl. Then the

following assertions hold :

(i) ZK(J) ZK(I),

(ii) Jg {/ e R I ZK(f)2ZK(I)},
(iii) if ZK(I) # 0 then J # R

Proof Since J contains I we have the inclusion ZK(J) E ZK(I). To prove
the opposite inclusion as well as assertion (ii) it suffices to prove that for
each point a (al, a2,..., ar) e A'K of ZK(I), we have that f{a) 0 for all

/ g J. However if / e T then there exists a polynomial p in PK(m) for
some natural number m and elements f1, /2,..., fm-i in R such that

p(fi, fl,-,fm-l,f)el-
Since a is in ZK(I) we obtain that

p[fiia),fzia), -,fm-i /(«)) 0 •

However, we have that p e PK(m) so that /(a) 0.

The last assertion of the Proposition follows from assertion (ii).

The crucial tool in our proof of the Hilbert K-Nullstellensatz is the

following result, which certainly is well known, but for which we have no
reference.

Proposition 5. Assume that K is not algebraically closed. Then, for each

positive integer m, there is a homogeneous polynomial p e k[y1, y2,ym]
with only the trivial zero in A£. That is, ZK(p) (0, 0,..., 0).
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Proof. For m 1 we can use p(y1) jq. The heart of the proof is the

case m 2. We divide the proof for m 2 into two cases.

Case 1. There exists an element a in k\K which is separable over k.

Let L be the normal closure of k(a) in k. Then L is a finite separable

extension of k and thus generated by one element ß. That is L k(ß).

Since L is normal all the conjugates ß ßi5 ß2, -, ßn of ß are in L and

clearly L /c(ß£) for z 1, 2,..., n. We have that L is not contained in

K because cn^K. Hence, none of the roots ßi,ß2»—>ßn °f niinimal

polynomial f(x)ek[x] of the element ß over k, are in K. Consequently,

the homogenization.

p(.yi ' j;2) yd2- f(yi-y 21)

of /, where d is the degree of /, has no non-trivial root in A|.

Case 2. All elements of k\K are purely inseparable over k. Choose an

element y e k\K. Then yq a is in k for some power q of the

characteristics of k and y is the only root of the polynomial xq — a. Hence

p(y 1^2) (yi~ay2)q

is a homogeneous polynomial without any non-trivial roots in A|.
The two cases above exhaust all possibilities for elements in k\K.

Hence we have proved the existence of homogeneous polynomials in k[y1, y2]
without any non trivial zeroes.

We now proceed by induction on m. Assume that m ^ 2 and that

we have proved the existence of a homogeneous polynomial p(yl9 y2, -, ym)

with only the trivial zero in A^. Let q(y1, y2) be a homogeneous polynomial
with only the trivial zero in A|. Then, if d is the degree of p, we have

that r(yi,y2,...,ym+1) q(p(y1 y2, -, yj, ydm+i) is a homogeneous poly-
nomial with only the trivial zero in A£ + 1. Indeed, the homogeneity is clear,
and if {alJa2,...,am + JeAf1 is a zero of r, we must have that
p(a1, a2,..., am) 0 and am + 1

0 since q has no non-trivial zeroes. Then

we must have that a1 a2 am 0 since the same is true for p.

§ 3. Proof of the Hilbert K-Nullstellensatz

There exists in the literature a great variety of proofs of the Hilbert
Nullstellensatz. Most of them start by proving the weak form and then
deducing the Nullstellensatz by localization procedures that are more or less
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related to a method called Rabinowitz trick. We shall next show that
Rabinowitz trick also can be used to deduce the Hilbert K-Nullstellensatz
from its weak form.

Proposition 6. We have that the Hilbert K-Nullstellensatz follows from its
weak form.

Proof It follows from Proposition 3 (i) that it suffices to prove that, if
the weak Nullstellensatz holds, then we have an inclusion

{feR I ZK(f)ZK(l)\ S ^7
for all ideals I in R.

Let / in R be an element that vanishes on ZK(I). Choose generators
h1,h2,...,hn of I and let J be the ideal, in the polynomial ring R[x]
in the variable x over R, which is generated by the elements

hl9 h2,..., hn, 1 - xf

of R[x]. Since / vanishes on the common zeroes of hl9h2,..., hn in A^,
it follows that the subset ZK(J) of A^+1 is empty. It then follows from

the weak K-Nullstellensatz that ffj R[x]. Hence there is a polynomial
p e PK(m) for some natural number m and elements /1? /2,..., fm-1 in R[x]
such that

P(/b/2v,/m-i, l)e J.

That is, there are polynomials gi,g2, 9m 9 in such that

P(fl,fl,/m- 1 > 1) Ê ^ + 00 -V) •

1=1

We substitute x y_1 in the latter equation and obtain, after multiplying
by a sufficiently high power yN of y and using the homogeneity of p, an

equation

p(f'i,f'2,~,f'm-i,yN)t, + g'{y-f)
i 1

in R[_yf If we substitute / for y in the latter equation we obtain that

p{eem_x,

where et f'j(x1,x2i„.,xr-1,f) for i 1,2,..., m — 1. Consequently we

have that /N g f/1. However, by Proposition 3 we have that f/1 is K-radical
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and hence radical by Proposition 2. We conclude that / e $7 as was to
be proved.

To prove the Hilbert K-Nullstellensatz we must now prove it in the

weak form. We shall here give a proof that emphasizes the difference

between the case when K is not algebraically closed, which is the main
theme of this article, and the traditional case when K is algebraically closed,

for which there exists at least as many presentations as there are textbooks in

algebra or geometry.

Proof of the weak Hilbert K-Nullstellensatz when K is not algebraically
closed

From Proposition 4 (iii) it follows that it suffices to prove that, if / is

and ideal of R such that ZK(I) 0, then we have that 1 e ffl.
To this end we choose generators h1,h2,...,hm of the ideal J. By

Proposition 5, there is a homogeneous polynomial p e k[y1, y2,..., ym] with
only the trivial zero in A£. Since the polynomials ht have no common zero
we see that the polynomial

g(xl9 x2?.., xr) p(hl9hl9...9 hm)

in R has no zeroes in A^. We homogenize g by substituting xL yt • yffx
for i 1, 2 r and multiplying by ydr+19 where d is the degree of g. The
resulting polynomial q(y1, y2, vr+1) is then in PK(r+ 1). Moreover, we have
the equalities

q{X1, x2, xr, 1) - g{x1, x2,.., xr) p{h,, h2 hm)

Since p is homogeneous and the ht are in /, all the members of the latter
equalities are in /. Since q e PK{r+1) we conclude that 1 g ,^7 as we wanted
to prove.

Proof of the weak Hilbert Nullstellensatz

For completeness we give one of the many short proofs of the weak
Nullstellensatz. It is based upon the following two elementary results

(a) Let L[x] be a polynomial ring in the variable x over a field L
and / a non-zero element of L[.x], Then L[x]r is not a field.

(b) Let A be an integral domain and x an element that is integral over
A. If A[x] is a field, then A is a field.

Of these results the second is trivial and the first follows immediately
from the existence of infinitely many irreducible polynomials over L.
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The weak Nullstellensatz is a consequence of the following more general
result.

Proposition 7. The following two assertions hold.

(i) Let P be a prime ideal in R. If (R/P)g is a field for some
element g in R/P, then P is maximal

(ii) Let M be a maximal ideal in R. Denote by S the polynomial ring
k[xx, x2, •••> xr-1] and let Q — M n S. Then Q is a maximal ideal in
S and the class x of xr in R/M is algebraic over S/Q.

Proof We shall prove the two assertions of the Proposition simultaneously

by induction on r. For r 1 the Proposition is assertion (a) above.

Assume that the assertions of the Proposition hold for S. We shall prove
that they hold for R.

Let P be a prime ideal of R and let g e R/P. We let Q P n S

and denote by L the field of fractions of S/Q.
Assume that (R/P)g is a field. If x denotes the class of xr in R/P

we then obtain that

(R/P), (S/ÔM L[x],.
From assertion (a) above it follows that x is algebraic over L. Hence L[x]
is a field and in particular L[x] L[x~]g.

We obtain on the one hand a relation

g~1 a~1(a0 + a1x +... + anxn)

with a and ai in S/Q for i 0, 1,..., m and consequently equalities

(R/P)g (R/P)a (S/Q)a\_X~\

On the other hand we obtain a relation

bxn + bn-1 x"-1 + + b0 0

with b and bt in S/Q for i 0, 1,..., n and consequently that x is integral
over (S/Q)ab. Since (S/Q)ab\_x~] (S/Q)a[x~\ is a field it follows from assertion (b)

above that (S/Q)ab is a field. By the induction assumption we then have

that Q is maximal. In particular we have that a is invertible in (S/Q) L,

so that (R/P)g (R/P)a R/P- Hence the ideal P is maximal. This proves
assertion (i) of the Proposition. However, the above proof applied to M
gives assertion (ii) so that we have proved the Proposition.
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To prove that, if K k and I is a proper ideal of R, we have that

ZK(I) # 0, we choose a maximal ideal M containing /. By repeated

application of assertion (ii) of Proposition 7 we see that there is a /c-homo-

morphism

a: R/M -> k K

Hence, if a1,a2,..., ar are the classes of xx,x2,.~, xr in R/M we have

that (a(oq), a(a2), a(aj) e ZK(M) ZK(I) and Zx(7) / 0 as we wanted to

prove.

§4. Connections with previous results

A less elegant form of the Hilbert K-Nullstellensatz, that do not involve

the K-radical explicitely, is the following :

Let J be an ideal of R. The following two assertions are equivalent :

(i) If f e R vanishes on ZK(J), then f e J.

(ii) If fi, f2, -, fm are polynomials in R such that p(fx, f2,fm) e J

for some p in PK{m\ then fm e J.

From Proposition 4 (ii) it follows that assertion (i) can be stated as

J {f e R \ZK(f)3ZK(J)}

and from the definition of the K-radical assertion (ii) can be stated as

J ffj. Hence the equivalence of the two assertions is the Hilbert
K-Nullstellensatz for K-radical ideals. However, if / is any ideal of R,

we have that J ^fl is K-radical by Proposition 3 and that ZK(I) ZK(J)
by Proposition 4(i). Hence, the above result is equivalent to the Hilbert
K-Nullstellensatz

^7 {/e RIZ3for /.
The sets PK(m) in the particular case k K, were introduced by Adkins,

Gianni and Tognoli [1] in order to prove the above result when k K.
As a consequence they obtained the Hilbert Nullstellensatz in the particular
case k K k. The reason for introducing the sets PK(m) in general is

to formulate the above more general result, that is a true generalization
of the Hilbert Nullstellensatz.
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In the case that k is an ordered field results similar to the Hilbert
K-Nullstellensatz were proved by Dubois [2] and Risler [7]. To state their
results we introduce the following notation :

Assume that k is an ordered field. Given an ideal I in R we let

Id {f e R I there exists an integer ra, positive elements al9 a2,am of
k and rational functions ul9u2, -, um in k(x1, x2? •••> xr) such

m

that /"(l + Yj ai uf) e 1} and
i 1

IR {/ eR I there are positive elements a2,a3,...,am of k and elements
mfi,h,-,fm of R such that + V

1 1

It is fairly easy to see that IR and ID are radical ideals and clearly
IR ID. The Hilbert Nullstellensatz of Risler [7] states that, if k K Rk

where we denote by Rk the real closure of k, then

IR {feR\ZK(f) ^
and the Nullstellensatz of Dubois [2] that, if then

ID \f e R I ZK(f) i ZK(I)\.

In particular it follows from these results that in the above cases IR

or ID are equal to the K-radical ^/1. From our point of view it is more
satisfactory to proceed in the opposite direction and first prove directly, in
the above cases, that the ideals ID or IR are equal to the K-radical and thus

obtain the results of Dubois and Risler as a consequence of our K-Null-
stellensatz. This can be done, however in order to prove that the various
ideals are equal we need to use S. Lang's [6] version of Hilbert Nullstellensatz
for real closed fields or Artin's solution of Hilbert's 17th problem (see [6], § 3

in particular Theorem 5 and Corollary 2 p. 279), so that this procedure
is too close to the methods of Dubois and Risler to merit a separate

presentation here.

§ 5. TWO EXAMPLES

In the introduction we associated to each ideal I of R a subset IT of

R such that I ç IT ç $1. For the two pairs of fields k K Z/2Z
GF(2) and k K Q we give, in this section, examples of ideals I

such that we have a strict inclusion IT C ^1.
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Example 1. Let k be the field with two elements and let K k. Consider

the ideal I (xj g k\jclix2] R- The following three assertions hold:

(i) We have that

ZK(I) {(0, 0), (0. 1)} E Aland
{/ g R I / vanishes on ZK(I)} (xx x2(x2 + 1)).

(ii) ^7 (x1;x2(x2 + l)).

(ill) IT - (xj - L

In particular we have a strict inequality IT C

Of the three assertions (i) is obvious and the second follows from (i)

and the Hilbert fONullstellensatz. To prove assertion (iii) we let peP^{m)
and fi, ffn be elements in R such that p(f1, f2,.... fm) e L We shall

prove that f e I for i 1, 2.r. Assume to the contrary that not all
the f are in 1. Then the polynomials f(0, x2) are not all identically zero.
Let d be the non-negativ integer such that

f{ 0, x2) xfffi(x2)fori 1,2,m
and x2 does not divide gjx^) for some index j. Since p(f1, f2,..., fm) e I
we have that

p(A(0, x2l mx2).fjo,x2)) Xd2ep(g1{x2), ),gm{x2))

is identically zero in /c[x2], where e is the degree of p. Hence

pidifril -, gJz2))

is identically zero. In particular we have that (^(O), g2{0),... gJO)) is a zero
of p in with gJ0) / 0. This contradicts the assumption that p e P°K(m).

Example 2. Let k K Q and let R ^[xl5x2,x3]. Moreover, let

/()T>};2 5 >'3) >;i + );2 + 3y3

and I (/(pi, y2. y3)) the ideal in R generated by /.
The following three assertions hold :

(i) We have that ZK(I) {(a, ~a,0)\aeK} ç Af and

{/ g R I / vanishes on ZK(I)} (x1E x2, x3).

(ii) *ß « (x1 + x2, x3).

(iii) The ideal IT does not contain a (non-zero) linear form.

In particular we have a strict inequality IT C */l.
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The first assertion of (i) is a well known result in number theory
(see e.g. Hardy and Wright [3], Theorem 232 page 196) and the second

assertion of (i) is an immediate consequence of the first. Assertion (ii)
follows from (i) and the Hilbert K-Nullstellensatz.

To prove assertion (iii) we let I axx + bx2 + cx3 be a non-zero linear
form and p p(y1, y2,..., ym) e Pi(m) an element of degree d. Assume

that there are polynomials f fi{x1, x2, x3) of R for i 1, 2,..., m — 1

such that

P(fl fl,-, fm-1,1) fC*1*2 *3) 1 X2 X3)

for some polynomial g g(x1, x2, x3). Then the following six assertions

hold:

(a) The polynomials /l5 /2,..., fm-x have zero constant term.

Indeed, specialize x1} x2, x3 to 0, 0, 0 respectively. We obtain that

p(fi(0,0, 0), f2(0, 0, 0),..., /M_ x(0, 0, 0), 0) /(0, 0, 0) 0(0, 0, 0) 0

Hence the existence of a non-zero constant term would contradict the

assumption that p e
Denote by lt li(x1, x2, x3) the linear term of ft.

(b) The homogenous polynomial p(/1, l2,..., lm~ i, I) is not (identically)
zero and it is the lowest non-zero homogeneous term of

P(fl,fl,-,1,0 •

Indeed, if p{l±, l2,..., lm-1,1) were zero, we can specialize (x1,x2,x3)
to a point (öj ,b\,cx) of K3 which is not a zero of /. We then obtain

p(lfai, ci), z2(«i, Cj),, bi, cj, /(a!, bi, cj) 0 which again
contradicts the assumption that peP^(m). The second assertion of (b)

follows from (a).

Denote by h(xl9 x2, x3) the non-zero homogenous term of g(x1, x2, x3)

which has lowest degree.

(c) We have that h(xl9 x2, x3) is of degree d — 3 and that

p(/1; l2,/m_l5 l) f{x1

Indeed, since / is homogeneous of degree 3, assertion (c) follows from
assertion (b).

We write lt atxx + hfx2 + ctx3 for i 1, 2,..., m — 1.

(d) kke f/zat a b and that at bt for i 1, 2,..., m — 1.
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Indeed, specialize x1,x2,x3 to 1, —1,0 respectively. From assertion (c)

we obtain that

p{a1 — b1, a2 — b2,..., am_1 — hm-1, a—b) /( 1, -1,0)^(1, -1,0) 0.

Hence assertion (d) follows from the assumption that p e P £(m).

(e) We have that a b ai bi 0 for i 1, 2,..., m — 1.

Indeed, specializing x1,x2,x3 to xl9x2,0 respectively, we obtain from
the equation of assertion (c) and from assertion (d) that

p(a1(x1 + x2), a2(x1 + x2),..., am„1(x1 + x2), aCxq + xJ)

frî + x!) h(x 1, x2, 0).

The left hand side of the latter equation is equal to

(x1 + x2)dp(a1,a29 -, a)

which is not divisible by x\ + x\ unless p(a±, a2,..., am_x, a) 0. Assertion
(e) therefore follows from assertion (d) and the assumption that p e P ^(m).

(f) We have that c ^ 0 and p(c1, c2,..., cm_1, c) 0.

Indeed, since I axl + bx2 + cx3 is non-zero it follows from assertion (e)

that c ^ 0. Moreover it follows from assertion (e) that the equation of
assertion (c) can be written as

p(c1x3, c2x3,..., cm_ cx3) f(x1, x2, x3) h(x±, x2, x3).

The left hand side of the latter equation is equal to x3p(cly c2,..., cw_l5 c)

which is not divisible by f(x±, x2, x3) unless p(cx, c2,..., cm_1, c) 0.

We have thus proved that, if we assume that polynomials /1, /2,..., fm-1
such that p(Jl9 /2,fn-1,l) e I exist, we arrive at the contradiction (f)
to the assumption that p e P£(m). Hence we must have that I IT as asserted.
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