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22 M. MASUDA AND M. SAKUMA

where indicates that there is an orientation preserving diffeomorphism
of pairs which is concordant to the identity map as a diffeomorphism of
the ambient space M.

Our results suggest that 7(M, L) and 70(M, L) depend only on the order
of a meridian of L in tu1(M —L) or HfM — L; Z). Roughly speaking,

according as the order is infinite, 1, or p (1 <p< oo), they can be distinguished
by (at least) these three types :

Type 1 7(A7, L) {ON}

Type 2 I(M, L) „, /0(M, L) ker a

Type 3 {0} <= 7(M, L) <= „, {0} <= 70(M, L) c ker a

(see section 4 for a(S" + 2, K)).

We refer the reader to 1.1, 2.6, 3.4, 5.1, 5.2, and 5.8 for the precise

statement.
This paper consists of five sections. In Section 1, we deduce a necessary

condition for 70(M, L), which is valid for any (M, L). We treat type 1 in
Section 2. Type 2 is discussed in Sections 3, 4 and type 3 is discussed in
Section 5. We will find that type 3 is closely related to the generalized
Smith conjecture.

The authors would like to express their hearty thanks to Professors

A. Kawauchi and T. Maeda for helpful conversations and suggestions.

§ 1. General remarks on /0(M, L)

It is known (and it is easily verified) that the signature of a Seifert

surface of an oriented n-knot K in Sn + 2 is independent of the choice of a

Seifert surface; so it is an invariant of the oriented knot K. The invariant
is called the signature of the knot K and denoted by Sign (Sn + 2,K). We

note that Sign(S" + 2, K) is trivially zero unless n + 1 0 (4).

As is seen in Section 3, there is a pair (M" + 2, Ln) such that /(M, L) Jf n

for any n ^ 3. In contrast, we can deduce a necessary condition for
J0(M, L) which holds for any pair (M, L).

Theorem 1.1. If (Sn + 2, K) e 70(M, L), then Sign (Sn + 2, K) 0.

Proof Let F be a Seifert surface of K. Since Sn+2 dDn+3, we can

push the interior of V into the interior of Dn + 3 so that V is transverse

to Sn + 2. This yields an oriented pair (D" + 3, V) having (Sn + 2,K) as the

boundary.
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The boundary connected sum (M, L) x I^(Dn + s, V) gives a cobordism

between (M, L) # (S"+2, K) and (M, L). We note that the ambient space of the

cobordism is diffeomorphic to M x I. Since (Sn + 1, K) e I0(M, L), there is an
orientation preserving diffeomorphism / : (M, L) tf (Sn + 2, K) -> (M, L) which
is concordant to the identity when regarded as a diffeomorphism of the

ambient space M. We paste togethor (M, L) tt (Sn + 2, K) and (M, L) by / to

get an oriented pair of closed manifolds. Since / is concordant to the

identity, the resulting ambient space is diffeomorphic to M x S1. We shall
denote by X the resulting oriented closed submanifold of M x S1.

The additivity property of the signature (see [AS, p. 588]) says that

Sign X Sign L x I + Sign V Sign V,

where SignL x I 0 follows easily from the definition of the signature
of a manifold with boundary. By the Hirzebruch signature theorem (see

[MS, § 19]) we have

Sign X

where the right hand side means the Hirzebruch L-class J£(X) of X
evaluated on the fundamental class [X] of X. In the sequel we shall show
&(X){X] 0.

Let j:X -> M x S1 be the inclusion map. Then it is not difficult to
see that

(!-2) 7*1X1 [LxS1] in Hn + 1(M x S1 ; Z)

where [LxS1] denotes the homology class represented by x S1.

Let v be the normal bundle to XinM x By the multiplicativity
of L-class we have

^(X) jS?(v)" V^MxS1)
(1.3)

•S?(M x S1)SC{M) x jSfX) 7

where k: Mx S1-> Mis the projection map. Since dim v 2, we have

T4) seiy) 1 + Pl(v)/3 1 + e(v)2/3

where Pl and e denote the first Pontrjagin class and the Euler class
respectively.

On the other hand it is known that

f1'5) efy) fj, (1)



24 M. MASUDA AND M. SAKUMA

where j, : Hq(X ; Z) Hq + 2(M x S1 ; Z) denotes the Gysin homomorphism
and 1 e H°(X ; Z) is the unit element. Remember the definition of j
It is defined so that the following diagram commutes :

H«(X;Z) -> xS';Z)

j n[X] j n[M x S1]

H„ + i-q(X; Z) ^ HnxS1 ; Z)

where the vertical maps are the Poincaré dualities. It says that

(1) n[MxS'] =!,[!].
This together with (1.2) means that

/ (1) G K*H2(M ; Z).

Hence it follows from (1.4) and (1.5) that

J£?(v) e j*n*H*(M ; Q)

and hence

e j*n*H*(M ; Q)

by (1.3). This together with (1.2) implies that

^(I)[I] 0 Q.E.D.

Theorem 1.1 gives a necessary condition for (Sn + 2,K) to belong to

J0(M, L). When we consider the converse problem, i.e. the problem to find
(Sn + 2,K) in I0(M,L), we apply the relative s-cobordism theorem. We shall

state it as a lemma for later convenience's sake.

Lemma 1.6. Suppose there exists a cobordism (U, Z) between (M, L)
H (Sn + 2, K) and (M, L) such that

(1) Z is diffeomorphic to L x /,

(2) t/ze exterior E(Z) of Z is an s-cobordism relative boundary.

Then (Sn + 2, K) e I0(M, L).

Proof The relative s-cobordism theorem says that E(Z) is diffeomorphic
to E(L) x I where the diffeomorphism can be taken as the identity on

E(L) x {0} and (dE(L)) x L Therefore it extends to a diffeomorphism:
(U, Z) -» (M, L) x I which is the identity on the 0-level. This means that
(Sn + 2, K) e I0(M, L). Q.E.D.
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