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t (F)+ F^x(i0)tOo) + j0*<Id)

(see [Ml, Lemma 7.8]). Here F,j0,andId are all simple homotopy

equivalences; so these Whitehead torsions vanish. Hence it follows that

x(j0) 0, because F#: Whfa^U')) -* Whin^EfL x I)) is an isomorphism.

This means that U' is an s-cobordism. Therefore (Sn + 2, K) e I0(M, L) by

Lemma 1.6. Q.E.D.

§ 5. Type 3 case

In this section we treat the case where <m> or [m] is of order p

(p is not necessarily a prime number). We begin with

Lemma 5.1. Suppose [m] is of order p. Then if (Sn + 2, K) e I(M, L),

then (Sn + 2, K)p is a homotopy (n +2)-sphere.

Proof Let r be the order of Tor H^M- L ; Z), and let y be the canonical

epimorphism —L) —» HfM — L;Z) ® Zr. Since the order of y(<m>)
is p, we obtain the desired result by an argument similar to the proof of
Lemma 2.1. Q.E.D.

If p ^ 2, there are infinitely many knots (Sn + 2,K) such that (Sn + 2,K)P

is not a homotopy (n + 2)-sphere ; so Lemma 5.1 shows that I(M,L) c jT„
for such (M, L).

The rest of this section is devoted to looking for a non-trivial knot in

J(M, L) or I0(M, L). We will extend Proposition 3.6 and 4.2 to the case

where <m> is of order p. Lemma 5.1 reminds us of counterexamples to
the generalized Smith conjecture.

Let (Sn + 2,K) be an n-knot which bounds a disk pair (.Dn + 3,D) such

that (Dn+3,D)p is a homotopy (n + 3)-disk. Since (Sn+2,K)P is the boundary
of (Dn + 3,D)p, (iS"+2, K)p is a homotopy (n + 2)-sphere. If n + 3 ^ 5, then

(D" + 3, D)p is diffeomorphic to Dn + 3 and hence (S" + 2, K)p is diffeomorphic to
Sn + 2.

The p-fold branched cyclic covering (Dn+3, D)p supports a Zp-action with
the branch set D as the fixed point set. Let E(D)p be the exterior of D
in (Dn + 3,D)p and let p : S1 -> E(D)p be an equivariant embedding of a

meridian of D in E(D)p, where the standard free Zp-action is considered
on S1. Since p is a homology equivalence and equivariant, the Whitehead
torsion of p is defined in Wh(Zp). Clearly it is independent of the choice
of p; so we shall denote it by Tp(Dn + 3, D).

The following theorem is an extension of Proposition 3.6.
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Theorem 5.2. Suppose <m> is of order p (p may be equal to 1)
for (Mn + 2,L") and n ^ 4. Then {Sn + 2, K) e I0(M, L) if it bounds a

disk pair (D" + 3, D) suchthat

(1) (Dn + 3, D)p is diffeomorphic to Dn + 3i

(2) p^p(Dn + 3,D) 0,

where : Wh(Zp) -* Wh(n1(M — L)) is the homomorphism induced from
a homomorphism p: Zp -> — L) sending a generator of Zp to

<m> g nfM—L).

Remark 5.3. (1) For each p, there are infinitely many n-knots satisfying
the conditions (1) and (2) in Theorem 5.2. For example the Zp-orbit spaces
of Sumners' knots [R, p. 347] (which are counterexamples to the generalized
Smith conjecture) are the desired knots. In fact, Tp(Dn + 3,D) 0 for them.

(2) If p 1, 2, 3, 4, or 6, then Wh(Zp) 0. Hence the condition (2)

of Theorem 5.2 is trivially satisfied in these cases.

Proof of Theorem 5.2. We shall observe that the proof of Proposition 3.6

works with a little modification. As before E(L x I ^ D) can be viewed as a

cobordism relative boundary between E(L) and E(E tt K). We shall check

that this is an s-cobordism.
The condition (1) implies that

(5.4) n1(E(D))/<mp>~Zp

where a meridian of D in Z)"+3 is also denoted by m. Hence it follows
from the decomposition (3.7) that

(5.5) n^EiLx/)£>))~ ti^LX/)) * n^EiDj)
<m>

~ n^E^xlj) * n1{E(D))/<mp>
zp

(as <m> is of order p in ni(E{L x /)))

c 7i^EiLxI)) (by (5.4))

This implies that the inclusion map i : E(L) E(L) x {0} -> E(L x I D)

induces an isomorphism %(£(!,)) -> %(£(!, x/ tjD)).

We consider the map i: E(L) -> E(L x I ^\D) lifted to the universal cover.
Let q:É(LxI ij D) -> E(LxI il D) be the covering projection map. By (5.5)

q~1(E(Lx /)) is exactly the universal cover E(LxI). As for q~1(E(D)) we
need a little consideration. The above observation (5.5) shows that the image

of : %(£(£>)) -> n^EiL xl ^D)) is isomorphic to Zp, where j is the inclusion
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map. We shall identify 7>i(E(£)) with Zp. Remember that Zp acts freely

on E(D)Pascovering transformations.

Claim 5.6. q'^D))E{D)P x II, where the right hand side denotes
Zp

the orbit space of E(D)P x II by the diagonal Zp-action defined by

S. (x, g)(xs-1, sg)for seZp,xe E(D)P,andg eTl.

Proof. The n-covering q^fFfD)) - is classified by the map: E(D)

-* 511 induced from the homomorphism j*:nfElD)) II nfElL x I >1 £»)).

Here factors through the inclusioni:Zp -> II :

nfEiD)) 5 n

\ /'
Z„

e

p

The pullback of the universal II-bundle £11 ->• 511 by is of the form

EZP x II ->• BZP. In fact, since £ZP £11, the map (u, g) ug (we£Zp, II)
Zp

defined from EZp x IT to £11. The map induces a II-bundle map fromis
Zp

EZn x II -> BH to £n ^ BH. On the other hand the covering induced from
Zp

the homomorphism / : ju1(£(Z>)) - Zp is exactly the Zp-covering E(D)P - E(D).

These prove the claim.

Consequently we have a decomposition

(5.7) £(LxHD) Ë(L x I) u E{D)p x II,
Zp

where Ê(L x I) and E(D)p x II are pasted together along Dn x S1 x II

equivariantly embedded in their boundaries. The condition (1) means that
E(D)p is a homology circle. This together with (5.7) tells us that i: E(LxI)

Ë(L x I D) induces an isomorphism on homology as Z[II]-modules.
Hence i is a homotopy equivalence.

The decomposition (5.7) also tells us that

r(() pH!Tp(D" + 3, D) up to sign

Hence x(i) — 0 by the condition (2). Therefore E(LxI 1jD) is an s-cobordism
relative boundary. The theorem then follows from Lemma 1.6. Q.E.D.

A torsion ip(Sn+2,K) is defined similarly to xp(Dn + 3, D) if (Sn+2,K)p
is a homotopy (n + 2)-sphere. The following theorem is an extension of
Proposition 4.2.
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Theorem 5.8. Suppose <m> is of order p (p may be equal to 1)
for (Mn + 2, Ln) and n ^ 4. Let anp 2 if n 0 (4) and p is even,
and let anp 1 otherwise. Then an p(Sn + 2, K) e I0(M, L) if

(1) a(Sn + 2,K) 0 incase n is odd.

(2) (Sn + 2, K)p is a homotopy (n + 2)-sphere,

(3) an,M(S" + 2,K) 0

where p^ is the same as in Theorem 5.2.

Proof. The argument developed in Steps 1, 2, and 3 of the proof of
Proposition 4.2 still works. Step 4 needs a little modification. Instead of
(4.10) we have

E(L UK) E(L) u E(K)d X II
zp

(5.9) I iId ih>;Idlup

É(L tfS") Ê(L)uE(Sn)p x II
zp

(see (5.7)) where hp: E(K)p - E(Sn)p denotes the lifting of h to the Zp-covers.
Since hp is a homology equivalence, the above diagram tells us that hx

is a homotopy equivalence.

It also tells us that

p(Sn
+ 2,K),

which vanishes by the condition (3). Hence h1\ E(L # K) -* E(L Ö Sn) is a

simple homotopy equivalence.

Step 5 also needs some modification. We need to replace a and ß

by the canonical epimorphism y : Z - Zp and p : Zp - n respectively. Then
we have

<^F) (h).

Here we distinguish three cases to observe the value <j(h).

Case 1. The case where n is odd. In this case the trivial homomorphism
a: Z - 1 induces an isomorphism Ln + 3(Z, 1) - Ln+3( 1, 1) ([Wll, 13A.8]).
As observed in Step 5 of the proof of Proposition 4.2, a^(a(/i)) vanishes.

Hence <j(h) 0, so a(/z) 0.

Case 2. The case where n 2 (4) or p is odd. According to Wall [W12]
or Bäk [Ba], Ln+3(Zp, 1) 0 in this case. Since y*<j(h) lies in Ln + 3(Zp, 1),

y*<j(h) 0 and hence <j(h) 0.
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Case 3. The case where n 0 (4) and p is even. In this case

Ln+3(ZP,1)^Z2. Since the value y*a(/z) e L„ + 3(ZP, 1) is additive with

respect to connected sum, it necessarily vanishes for (Sn + 2, K) # (Sn + 2, K).

The rest of the argument is the same as that in Step 5. This proves

the theorem. Q.E.D.
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