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b2

Then we have GCD(a, b, ¢) = 1, where = ¢, and so GCD(a,bf,cf?) =1,

4a
b+ /D

showing that I = [a, f ( )] is a primitive ideal of Op-. Hence C is

the image of the class of I under 0.

COROLLARY 4. If the class C of Op: contains the primitive ideal

)

where  f?

a, then f|b and the class 6(C)

b
—+yD
flf

contains the primitive ideal J = }—2 , —7—— of Op.

Proof. As D' = Df?= b2+ 4ac, and f?

a, we see that f|b, and so

A5 2]

GCD(f,c) = 1. By Corollary 2 we have I = (
L]

2a 2
b -
— ? + VD
and so, by Theorem 1, we see that |, ———7— € 6(C). Finally,
b - b
]/T)+—) —+ VD
a b/f+)D ( f f
by Corollary 2, J= |—,———| = ——— S A—
f? 2 2¢ 2

showing that J e 6(C).

4. REDUCED IDEALS

From now on in this paper we suppose that D, > 0 so that we are only
considering ideals in orders of a real quadratic field. An ideal / of Op can be

b+)D

written in the form I = ad|[1, ¢], where ¢ = . By Proposition 1 (ii),

2a
if I=a'd][l,¢’] is another representation of I, then ¢ = +a and
a b+ 1D D — b2
¢’ = — ¢ (mod 1). A real number of the form 2f , Where ¢ =
a’ a 4a

is an integer and GCD(a, b, c) = 1 is called a quadratic irrationality of
discriminant D.
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+ /D
2a

Definition 9. (Reduced number). The quadratic irrationality ¢ =

of discriminant D is said to be reduced if
(4.1) db>1, —-1<d<0.
It is easy to check that (4.1) is equivalent to each of the inequalities in (4.2)
(4.2) 6 O0<|)D-b<2a<|D+b,
(ii) 0<)D-b<2c<)/D+b.
Moreover (4.2) implies
(4.3) 0O<a<|(/D, 0<b<}yD, O0<c<|D.

Definition 10. (Reduced ideal). The ideal I = ad[1, $] of Op, where
b+yD : :
¢ = ” , 1s said to be reduced if, and only if, ¢ can be chosen to be
a

reduced.

From (4.3) we see that the number of reduced, primitive ideals of Op is
finite.

PROPOSITION 4. ([12]: Definition and Theorem 3.5). The ideal

b+1/13]

2

I-:d[a,

of Op, where a>0 and d > 0, isreduced if, and only if, I does not
o< da.

contain a nonzero element o satisfying |o|< da,

Proof. It suffices to prove that 7 is reduced if, and only if, the Z-module
[1, ] does not contain a nonzero element A = x + y¢ such that

(4.4) Ix|<1, |r]<1.

If I is reduced we can suppose that & > 1, — 1 < ¢ < 0. Let x and y be
integers such that 0 < A = x+ yp < 1.

Clearly we havey # 0. If y > 1, then we have y¢ > 1,sox < — 1, showing
that X=x+y&)< — 1. If y< — 1, then we have yp < — 1, so x > 2,
showing that A=x+ yi) > 2. This proves that [1, $] does not contain an
element A # 0 such that |A|< 1,|A|< 1.

Now suppose the Z-module [1, ¢] does not contain an element A # 0
satisfying (4.4). We can choose ¢ so that — 1< J> < 0, in which case
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/D

o = &)+ “~ > — 1. Hence, as ¢ cannot satisfy (4.4), we must have ¢ > 1,
a

so I is reduced.

b+1/D

LEMMA 4. If I = d[a, ] is an ideal of Op with 0<a

D
< 7 then I is reduced.

Proof. We can write I = da[l, ] with — 1< &) < 0. Then we have

- D
O =0+ [ > 1 so that 7 is reduced.
a

5. LAGRANGE’S REDUCTION PROCEDURE

In this section we describe Lagrange’s reduction procedure which was first
introduced in [2]. This procedure uses Lagrange neighbours and so is based
.on the continued fraction algorithm. The procedure, when applied to a given
primitive ideal I of Op, gives all the reduced ideals of Op which are
equivalent to I.

Let {a, b} be a representation of the primitive ideal I of Op. The
Lagrange neighbour of {a, b}is the representation {a’, b’} of the primitive ideal
I' of Op given as follows:

’ b+1/D 1
5.1) ¢ 2 ¢
' D—b2 D—p2
b"= —b+ 2aq, a = = + bg — aqg? ,
\ 4q 4q

(see (2.10) and (2.11)). We write {a, b} 3 {a’,b’}. The primitive ideal
I" = a’'[1, '] is also called the Lagrange neighbour of I.
We note that

1
O =—>1[01>1,
¢ —q ¢

as ¢ = [¢p]. We also remark that if a is kept fixed and ¢ is changed modulo 1
then ¢’, " and @’ do not change. Hence the Lagrange neighbour of {a, b}

depends only upon the sign of a. If {a, b} 5 {a’, b’} then by Corollary 1 the
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