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PERIODIC KNOTS, SMITH THEORY,

AND MURASUGI'S CONGRUENCE

by James F. Davis and Charles Livingston

A knot K in a homology 3-sphere £ has period n if it is invariant

under a homeomorphism h: £ £ of order exactly n with fixed set B, a

circle disjoint from K. The quotient space £ L/h is a homology sphere

containing K, the quotient knot. Kunio Murasugi [Mu] discovered the

following congruence involving the Alexander polynomials of the two knots.

(See also the proof by J. Hillman [H].)

Theorem A. Let K be a knot of prime power period pr_ in a

homology 3-sphere £ with fixed set B and quotient knot K. Let

Ar(0 and Ak(0 be their Alexander polynomials and let X be the

linking number of K and B. Then

AK{t) AjëtfKO + t+ + tx-l)Pr~l (mod/?)

where ^ means congruent up to multiplication by uV where u and i
are integers and u is relatively prime to p.

In another direction it is easily shown that if G Z/p acts cellularly on
a finite CW complex X, then %(X) + (p- p%(X/G). Using
Smith theory, E. Floyd [F] gave a proof of this when X is a finite-dimensional
CW complex with rki/*(Y; Z/p) < oo. The proof can be generalized easily to
the case of semifree actions of a /?-group G on X. (An action is semifree if
every point in X is either freely permuted by G or fixed by all of G. An action
of Z/p is automatically semifree.) We will prove a multiplicative analogue of
Floyd's theorem and use it to deduce Murasugi's congruence.

If X is a space with an action of the infinite cyclic group Cœ <t>
and F is a field with rkH*{X\F) < oo, we define a multiplicative Euler
characteristic

%m(X;F)eF(tr/F[t}t-i]*
to be the alternating product of the generator of the order ideals of HfX;!7).
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•(See [Mi] or § 1 for definitions). We will be most interested in the case

F ¥p, the finite field with p elements.

] Theorem B. Let G be a p-group. Suppose Cœ x G act on a finite-
dimensional CW complex X with rk/f*(A; Fp) <00, so that G acts
semifreely and cellularly. Then

I %m(X;Tp)Xm(XG;VpyG\-i %m(X/G; ¥pfG\

j Applying this to the case where X is the infinite cyclic cover of E - K will
^immediately yield Murasugi's congruence. One advantage of our approach is

that it generalizes to the case of high-dimensional periodic knots.
In § 1 we prove Theorem B and derive Theorem A. In § 2 we discuss the

; high-dimensional case and in §3 give the following application of Murasugi's
congruence to links.

Proposition C. Let L be a two-component link in a homology
f-sphere. If the Z/2 x Z/2 - cover branched over the link is also a

homology 3-sphere, then the linking number of the two components is

congruent to ± 1 modulo 8.

§1. Murasugi's Congruence

We will derive Theorem A from Theorem B and then prove Theorem B,

but we first give some homological preliminaries. If R is a commutative
Noetherian UFD with quotient field K and M is a finitely generated torsion
i?-module then we define the order of M to be [M] E°(M) e R/R*. Here

we take an exact sequence

Rk ^ Rm ^0

and we let E°(M) be a greatest common divisor of the determinants of the

m x ra-submatrices of A. If Mis a torsion f.g. i?-module then [M] =£ 0, and

we consider the order [M] as an element of K*/R*. If
0 -> M' M M" 0

is an exact sequence of torsion f.g. ^-modules, then J. Levine [L, lemma 5]

shows [M] [Mr] \M"]. It follows for formal reasons that if
C* {Cn -... C0} is a chain complex of torsion f.g. i?-modules then
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%m(Ç*) : n[C/](_ 1}/

equals %m(Tf*(G*)). In particular if G* is exact, then Xm(C*) 1.

Next we turn to Alexander polynomials. By Alexander duality

HiÇl-K) Z. Let 7i : X £ - K be the infinite cyclic cover of the knot

complement. The infinite cyclic group Cœ < t > acts on X and Hx(X\T) is

a f.g. torsion module over the group ring Z[Cœ] Z[t3t~1]. The Alexander

polynomial AK(t) is its associated order. (Note that Zconsists of
± V and the quotient field of Z[ts t~l] is the field of rational functions Q(O-)
As usual we normalize so that AK(t) is a polynomial with integer coefficients
and non-zero constant term.

If K has period pr, let n: X Ë - K be the infinite cyclic cover of the

quotient knot. The G Z/p'-action on Z - K lifts to a G-action on X with
quotient X and fixed set B Indeed, let g be a generator of G.

Then g~n:X-+Y,-K induces the trivial map on Hx and so lifts to

g: X -> A. Since g has a non-empty, path-connected fixed-point set there is a

unique lift g with fixed points and the fixed point set is B. Since gpr is a

lift of the identity which has fixed points, it itself is the identity and hence

g is a map of period pr. This gives an action of G x G on X. It further
follows that X/G Ë - K is an abelian cover inducing the trivial map on
Hx, so that we can identify this cover with 7Ï and X/G with X.

The cover n is classified by a map c: E - K S1 K(Z, 1) inducing
an isomorphism on Hx. The inclusion map B -> I - K induces multiplication
by the linking number X on Hx. Thus by considering c\B which classifies
k:B B, we see B is homeomorphic to X disjoint copies of R, cyclically
permuted by the action of Cœ.

Now Hj(X) and Ht{X) are zero for i > 1 and H0(X) and H0(X) are
isomorphic to ¥p Fp[t, l)¥p[t3 t~l], so xm(X) (t-l)/AK(t) and
%m(X) (t - 1)/Ap(t). Since XG B consists of X arcs cyclically permuted
by Gœ =i <t>,%(XG) tK - 1. Putting this together with Theorem B
we see

[Of- i)/A*(01 IT - IK"1 i)/a*(0K

or A K(t)AÂ:(?)/?r(l + t + + tl~l)pr~1 with the equality taking place in
Fp(t)/Fp[t, t ~']*. This gives Murasugi's congruence.

Proof of Theorem B. We prove the theorem by induction on the order
of G. Let G be a group of prime order p with generator g. Let
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G 1 + g + g2 + + gP~l

5=1 -g
be elements of the group ring FP[G]. Note that So 0 oS and ô^-1 g.
We consider the following chain complexes of Fp[t, t~ ^-modules (all
homology is with Fp-coefficients).

0 C*(XG) C+(X) $ oC*(X) -* 0

0 SC*(X) © C*(XG) C*(X) ^ oC*(X) - 0

0 -» OC*(X) -» SC,(AT) $ -» o

0 -» aC*(X)^ - 0.

These induce long exact sequences in homology. All homology is finitely
generated and torsion over the PID Fp[t,t~1]. We use shorthand notation

- if peF^G], we write %P(X) instead of %(H*(pC*(X)). The above

homological considerations show

%(X) %(XG)x°(X)

X(X) x\X)X{XG)x°(X)
%\X) x°(X)

x*>-2(X) x°wrw •

Multiplying all equations but the first together and cancelling terms we see

xm 1(X°) x'W •

Using the first equation to substitute for x°(X) one finds

x(fl xmwri.
Finally suppose G has order pr. Let Gx be a normal subgroup of index p.

By the exact sequences above rkH*(X/G\\Fp) < oo. By applying inductively
the result for the Gx-action on X and the G/Gi action on X/Gu Theorem B

follows.

§2. High-dimensional periodic knots

One advantage of our approach to Murasugi's congruence is that it applies

equally well to a more general situation. Higher-dimensional periodic knots
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were introduced in the thesis of R. Cruz [C]. He showed that if there is a

semifree Z/</-action on Sn with non-empty fixed set and an invariant knot
Kn~2 disjoint from the fixed set, then the fixed set is S1 if q 2, and is Sl

or S° if q 2.

For our purposes a knot K in a homology n-sphere Z is an embedded

(n - 2)-dimensional homology sphere. Let G be a finite group. The knot K is

G-periodic if it is invariant under a semifree G-action on Z with fixed set

B Sl disjoint from K. To simplify technicalities we assume the action is

smooth. Several complications arise: the group need not be cyclic, the action
need not be linear and the quotient Z Z/G will not be a manifold. (Even
in the linear case the quotient looks like a double suspension of a spherical
space form.) However we can still make sense of Alexander polynomials.

Proposition 2.1.

First we need a lemma.

Lemma 2.2. The linking number X lk (B, K) is relatively prime to the
order of G.

Proof. (See also [C, 2.1.1]). By restricting the action to a subgroup Z/p
of G, we will assume G Z/p, and show (X,p) 1. By applying the Lefschetz
Fixed-Point Theorem to a generator g of Z/p, we see that if n is odd, the action
on K is orientation-preserving, while if n is even, then p 2 and the action
is orientation-reversing. For local coefficients we will use Z', the integers
with the Z[Z/p]-module structure given by (Za;gO • k Zaf - 1 )'^n + l)k.

L — B —> Ki/Z/p, 1) classify the G-cover. We will consider the
commutative diagram:

Hn-2(K\ Z) A Hn.2(K; Z<) -+ Hn_2(K(Z/p, l);Zr)
(*) 1 1 ||

Hn_2fL-B\Z) -+ f/rt-2(Z-5;Z') -> Hn_2(K(Z/p, 1);Z')
The two groups on the left are infinite cyclic and the left vertical map is
multiplication by X. A diagram chase shows we will be done if we can show
both horizontal exact sequences are isomorphic to the short exact sequence
0 -> Z Z Z/p 0.

The map a is isomorphic to Z Z because it comes from a /7-fold cover
of {n - 2)-dimensional closed manifolds. The map

Hn^2(K;Z{) Hn_2(Z/p\Zl)
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we compute algebraically by using a free ZG-resolution of Z as a substitute
for the Eilenberg-MacLane space. By lifting a CW structure on K to K,

C*(K) ~{Cfl_2-+...-C0}
with the /-chains Cz free ZG-modules. By mapping a free ZG-module
onto ker(C/î_2-^ G„_3) and continuing inductively, one constructs a free

ZG-resolution of Z

£>* {... Dn -> Dn _ - C„ _2 ^ G0}

It follows that

Hn-2{K\Z<) Hn„2{C*{K)® zcZO

maps onto //„_2CD* ®zgZ') - Hn-2(/Z/p\Zt). Furthermore by using the
standard ZG-resolution of Z (see e.g. [Mac]), one easily computes that

; i/n_2(Z/p;Z') Z/p.
Choose a G-invariant normal disk to B in Z and let Sn~2 be its boundary.

Then the inclusion Sn~2-+Y-B is a homology equivalence. By the

comparison theorem applied to the spectral sequence of the G-coverings (see

[Mac]), the bottom row of (*) is isomorphic to

Hn-2(Sn~2;Z) -> Hn-2(Sn~2/G\Zt) - Hn-2{G\Zf

and hence by the previous paragraph to 0 Z -> Z -> Z/p -» 0. Thus
j (>-,/>) l.
I Proof of 2.1. Let TV be an equivariant tubular neighborhood of B. Then

j 0 H*(L~K,N;Z[1/X\) H*ÇL - K-B, N-B; Z[1A])
j where the first equality holds by the definition of linking number and the

second by excision. Then

0 - H* ((Z — K — B)/G, (N-B)/G; Z[1A]) H*(ÇL - K)/G, N/G; Z[1 A])
//*((£ — AT)/G,2?;Z[1A])

where the first equality follows from the spectral sequence of a covering, the

second by excision and the third by the homotopy equivalence B -> N/G. Thus

H*(L - K) looks like H*(Sl) except possibly for some X-torsion. But by 2.1,
X is prime to the order of G, so for all primes q dividing X, the transfer

map tr:i/*(Z -K;Z/q) -> //*(E -K;Z/q) is injective so there is no extra

X-torsion. »

To state Murasugi's congruence in higher dimensions is it necessary to find
a substitute for the Alexander polynomial. Let X and X be the infinite cyclic
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covers of £ - Kand t- Krespectively.Let AK(t) n/>o[//,(Ar)]("1)'+1

and A^(0 n,>0[//,(^)]("1), + '- The Wang sequence shows that

multiplication by t— 1 induces an isomorphism on H,(X) for > 0, so that if we

take the polynomial represented by [Hi(X)] and plug in 1 we get ± 1.

(Indeed if we consider the ring homomorphism (p: '] ->• Z defined by

<p(t) 1, then (p([/f,(A)]) is a divisor of [//,(X) ®Z[,,,-i]Z] [0] 1 e Z/Z*.)
Thus [//.(A')] represented a non-zero element in and hence A

and A Kit) give well-defined elements of Fp(t)*/V ?"']*• Then the conside-

rations of §1 show:

Theorem 2.3. Let K be a G-periodic knot in a homology q-sphere Z

with fixed set B, where G is a group ofprime power order pr. Let X

be the linking number of K and B. Then

AK(t) Ax(t)pr(l + /+... + tx~ly"-1 (modp)

§3. An application of Murasugi's congruence

For any X ± 1 (mod 8), T. torn Dieck and J. Davis [D-D] constructed

a 2-component link with linking number X in a homology 3-sphere Q whose

C2 x C2-cover branched over the link is a homology 3-sphere Z. We will
show that this congruence condition is necessary. Equivalently, we show

Theorem 3.1. Suppose the Klein 4-group G x H C2 x C2 acts on a

homology 3-sphere Z so that the fixed sets ZG and LH are disjoint
circles. Then their linking number X is congruent to ±1 modulo 8.

Proof. We have

Z -+ Z/G
I i

Z/H - Z/(G x H)

All four of these manifolds are homology 3-spheres and each has two disjoint
circles given by the images of the fixed sets. The linking numbers of each pair
of circles are all equal.

Let K Z G/G C Z/G and K K/H C Z/(GxH). Then K is a knot of
period 2. Renormalize AK(t) and A£(t) e Z[t, t~l] so that AK{t) A^-1),
Aj((t) AK(t~l), and A^(l) 1 A^(l). Murasugi's congruence shows
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(**) AK(t) aK{t)2(t{l~X)/2 + + 1 + + + 2/(0
where fit) eZ[U_1] satisfies f{t) fit'1). Writing

fit) ant~n + + a0 + + antn

we see /(l) /(- 1) (mod 4). Since Z - Z/G is a 2-fold cover branched over
K, I AKi - 1) I I H{(L) I 1. So 1 Ajfir(l) AKi~ 1) (mod 4), and we see

Aa-(— 1) 1- Take equation (**) and plug in t 1 and t - 1:

1 1 • X + 2 • /( 1)

1 i • (- l)(X-l>/2 + 2 • /(- 1)

Thus X (- 1)(X_ 1)72 (mod 8) so X ±1 (mod 8).

Applying the high-dimensional version of Murasugi's congruence ones sees

that if G x H C2 x C2 acts on a homology q-sphere L so that LG is a

homology ^ - 2 sphere and is a circle disjoint from ZG, then their linking
number X is congruent to ± 1 modulo 8. This and considerations from
L-theory lead us to conjecture that if G x H C2 x C2 acts on a homology
<7-sphere Z so that ZG is a homology /:-sphere and Z^ is a homology
q - k - 1-sphere disjoint from ZG, then their linking number X is congruent
to ± 1 modulo 8.
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