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From Lemma 3.5, it follows then that

Be u [( t + (- + °(I6I)) Z"B
8!, 835 6{0, 1} L \ ./ 1 / \2 /

so for sufficiently small 8, we may apply Lemma 3.1 to deduce z e W. D

We now combine all the results of this section.

Theorem 3.1. There is an open neighborhood of {z:|z|=l,z^l}
contained in W.

Proof. Apply Propositions 3.2 and 3.3.

Corollary 3.1. If z e (- 1, - 1 + 8) for sufficiently small 8

then z is a multiple zero of some 0, 1 power series. j

Proof. By Theorem 3.1, if 8 is small enough we can pick 0, 1 power series

fn and zeros zn of fn such that zn $ R and zn Z as n -> 00. By taking a

subsequence we may assume that the coefficient of zk in fn is eventually
constant for large n, for each k. By a Rouché's Theorem argument, the pairs
of zeros {zn,zn} of fn must converge to (at least) a double zero at z
of lim fn.

n -* 00

4. W IS CONNECTED

Since W is countable, we cannot hope to prove W is connected. We prove
instead that W is connected. First we need some topological lemmas.

Give {0, 1} the discrete topology and {0, 1}® the product topology, as

usual. If v (l>! v2i vn) is a finite vector of 0's and l's, let Su be the set

of sequences in {0, 1}® which start with v. The following lemma is the key
ingredient in the connectivity proof.

Lemma 4.1. Let Y be a topological space. Suppose /:{0, 1}®->T
is a continuous map such that

(4.1) f(Svo)nf(Svl)*Q
for all v e {0, 1}", and all n ^ 0. (Here vQ denotes the vector u with
0 appended, etc.) Then the image of f is path connected.
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Proof. Let w(0) f(x'0) and w(l) /(*0 be elements of the image we
wish to connect by a path. Find *1/2, x[/2 e {0, 1}® such that x'0, xi/2 have
the same first coordinate, and x\/2, *i have the same first coordinate and

f(x\/2) f(x'l/2). (If x'0,Xi have the same first coordinate, take

*1/2 *1/2 Xq'} otherwise apply the hypothesis (4.1) with u as the empty
vector.) Let w(l/2) be this common value.

Next find x1/4, x[/4 e {0, 1}®, using the same argument, such that

*o, *1/4 agree in the first two coordinates, x[/4, *i/2 agree in the first two
coordinates, and /(*i/4) f{x\/4). Let w( 1/4) be this common value. Do
the analogous thing at 3/4.

By induction, we may continue to define Xtf/2*, *df/2" » w(d/2n) at all
dyadic rationals d/2n in [0, 1], such that x'd/2n and x{d+i)/2n agree in the

first n coordinates and

W(d/2")f(Xd/2n)

By induction, we see that all the x'Q with q e (d + l)/2") agree in the

first n coordinates. Hence for
CO

r= £ e,2-'e[0, 1], e,6{0,l}
/ 1

not a dyadic rational, we may define

n

xr x'r lim x'0(n) where o(n) ^ 8/2,
co i 1

and w(r) f(xr). Then w maps [d/2n, (d + 1)/2W] into /(So) where

v e {0, 1}" is the first n coordinates of x'r, r e [d/2n, (d + l)/2n) and of
X(d+ l)/2" •

We now show that w is continuous at re [0, 1]. Let U be an open set

of Y containing w(r). Then contains Su and SV' for some finite
substrings u, vr of xr, x'r respectively, by continuity of / .By the last sentence

of the previous paragraph it follows that

w-*(U)2 w-i(f(Sv)uf(Su<))

will contain a neighborhood of r.
Thus w: [0, 1] ^ image (/) is a continuous path, and image (/) is path

connected.

Let M be a topological space. Give Mn the product topology and let the

symmetric group Sn act on Mn by permuting the coordinates. The space
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Mn/Sn, which parameterizes «-element multisets, can be given the quotient

topology.

Lemma 4.2. If A c Mn/Sn is connected, and the multiset {P, P, P}
is in A for some P e M, then the subset B c M of all coordinates

of points in A is connected.

Proof. Suppose not. Then there are open sets U, V ç M such that U n B
and V n B are disjoint nonempty sets with union B. Without loss of generality,

PeU. Let

Uf Ux Ux "• x U,

V (VxMxMx "• xM)
u (M x Fx M x ••• x M)

u (M x M x M x ••• x F).
Then C/', F7 are open sets in Mn which are stable under S„, so they project
to open sets U", V" in Mn/Sn. Also A ç U" u F,r since a point in A must
have all coordinates in U, or else at least one coordinate in B\U ç F.

Furthermore P e U" n A, and V" n A is nonempty also, since at least one

point of A has a coordinate in F, since F n B =£ 0. Finally
U" n F" n A 0, since it is not possible for a point of A to have all
coordinates in U, yet have some coordinate in F. This contradicts the
connectedness of A.

Theorem 4.1. W is connected.

Proof. First we show that for 5 e (0, 1),

fFô (PFn{z:[z|^ 1}) u {z: 1 - ô ^ \z | ^ 1}

is connected. The idea is to apply Lemma 4.1 to the function / which assigns
to (si, s2, the set of zeros of

1 + SiZ + s2 z2 + • • •

inside {z:|z|<l-ô}.To make a continuous map of this requires some
manipulation.

By Jensen's theorem, as was shown in Section 2, there is an upper
bound n on the number of zeros that a power series with 0, 1 coefficients can
have inside {z:\z\<1 - 8}. Let Mbe {z:|z|< 1} with the annulus
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{z:l — 6<|z|<l} shrunk to a point P. (Therefore M is topologically
Oo

a sphere.) To each power series 1 + £ £f-zf, 8/ e {0,1}, we assign the set
/ i

of zeros inside {z:|z|<l—6}, (counted with multiplicities) and throw in
extra copies of the point P as necessary to bring the total number of points
to n. Since the order of these n elements of M is unspecified, we obtain a point
of Mn/Sn. Let /((Si, e2, be this point.

We claim that this map

f : {0,1}»-+M"/Sn

is continuous. This follows easily from Rouché's theorem; if two power series

agree in the first m coordinates for m sufficiently large then their zeros
inside {z : | z | < 1 — 6} will be within e. Some may escape or enter the disk,
but this is not a problem, since in the topology on M, P is close to all
points z with | z | sufficiently near 1—6.

We next check condition (4.1) of Lemma 4.1. This is easily done using
the following trick: given

v Oh, U2, vn) G {0, \}n

let w m (vl9 %,..., un, 1, vl9 v2, vn). Then v e S00, wgS„i, and

f(v) /(w) (we extend v, w to infinite vectors by appending O's), since

1 + V\Z + V2z2 + ' ' ' + vnzn

and

1 + ViZ + V2z2 + * * • + Vnzn + Zn+l + UiZn + 2 + • • • + vnz2n+l

(1 + vxz + v2z2 + • • • + vnzn) (1 + zn+1)

have the same zeros inside {z:|z|<l-ô}. Therefore we may apply
Lemma 4.1 and deduce that the image of / is path connected.

Since /((0, 0,...)) (P, P, P,..., P), we may apply Lemma 4.2 with
A image(/) to deduce that Wd with the annulus {z:l-S^|z|<l}
shrunk to a point P is a connected subset of M. This is equivalent to the

connectivity of W5.
Since fLn{z:|z|^l} is the decreasing intersection of the compact

connected sets W1/m, it too is connected. So is its image under z^ 1/z.

Finally, W is the union of these two sets, which meet on the unit circle,

so W is connected as well.
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