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There are at least ns/s\ distinct equivalence classes in since each

(a,,as) has at most s\ different permutations. Let

Sj((a,))ai + • • • + ajsfor1,k
Note that

^ ^ Sj((ai)) < snj

so there are at most

k k(k+1)

Y[ (snJ — s + 1) < skn 2

j= i

distinct sets (^((cx/)), s*((a/))). We may now choose 5 \k(k + 1) + 1

and we have

k(k+ 1)
— ns

skn 2 skns ~ 1 < —
si

since n > sks\. So the number of possible (^((a,)), ^((a,-))) is less than

the number of distinct (a,-) and we may conclude that two distinct sets

{dj, as} and {ßi, ß5} form a solution of degree k.

Slightly stronger upper bounds are discussed in [22] and [15], but they are

much more difficult to establish and only improve the estimates to

'\{k2- 3) k odd
N(k) ^

I (k2 - 4) k even

We can also define M(k) to be the least 5 such that there is a solution of
size s and degree exactly k and no higher. Hua in [11] shows

M(k) ^ (k + 1)
\log(l+|) jk>

This is also a considerably harder argument than the above bound for N(k).

3. Ideal and Symmetric Ideal Solutions

We explore some of the properties of ideal solutions. On occasion we add

still more structure by requiring symmetric solutions. The notion of symmetry
depends on the parity of the degree of the solution. Only ideal symmetric
solutions are defined below, but one may easily define symmetric solutions for
arbitrary degree.
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An even ideal symmetric solution of size k + 1 and odd degree k is of the

form { ± ai, ±a(*+i)/2}, { ± ßi,±ß(*+i)/2} and satisfies any of the

following equivalent statements:

(k + l)/2 (k + l)/2

I af= £ ßr' for i
/ 1 I 1

(k + l)/2 (Ar+l)/2

II (x2 - a2) - n (x2 - ß^) C for some constant C
i i i i

(At + l)/2 (fc+l)/2

(i-x)^+i| v (xa' + x~ao - E (xß' + x~ß0-
c=i <-=i

An odd ideal symmetric solution of size k + 1 and even degree k is of the

form {ai, a*+i}, {-ai,..., -a^+i} and satisfies any of the following
equivalent statements:

£ aJf 0 for j 1, 3, 5, ..,k- 1

/ i

k + 1 k + 1

n (x-a,) - n (x + ai) C for some constant C
i i / l

A: + 1 k + 1

(i-x)^+i| £ *a/ - E *~a/-
/ 1 / 1

For non-ideal symmetric solutions the parity of the solution is named after the

parity of the degree plus one.

Corollary 2. If {ai,..., a„}, {ßi,...,ß„} is an ideal solution and is

ordered so that

ai ^ a2 < * • * < a„ and ßi ^ ß2 ^ • • • < ß„

then

cc i gfc ßj for any j
and

ai < ßi < ß2 < a2 ^ a3 < ß3 ^ ß4 < a4 • • •

(where without loss we assume that ai < ßj.
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Proof. This is all known, and easily deduced in the following fashion.

Consider the second form of the ideal solution in Proposition 1. This gives,

for some constant C

n (*-a,) - n C* - pi) c.
/ 1 i 1

So the polynomial p(x) : n"= i (x ~ a/) is just a shift of the polynomial
q(x) : n-= i(* ~~ ß/)- The result is now most easily seen by considering the

graph of p(x) and the graph of q(x) p(x) - C. Note that p and q have the

same critical points and these critical points separate the zeros of both p
and q. Note also that p and q never intersect.

Symmetric ideal solutions are only known for sizes n ^ 10. Throughout
this paper we call an odd symmetric ideal solution perfect if it forms a complete
set of residues modulo n. Listed below are ideal symmetric solutions for sizes

2 ^ n ^ 10, the odd symmetric solutions (with even degrees) are all perfect.
These solutions are listed in abbreviated symmetric form. For example the
solution for size 6 is

{±4, ±9, ± 13}, { ± 1, ±11, ± 12}

and the solution for size 5 is

{-8,-7,1,5,9}, {8,7,-1,-5,-9}.
2 {3},{1}
3 {-2,-1,3}
4 13,11},{7,9}
5 {-8,-7,1,5,9}

4, 9, 13}, {1, 11, 12}

- 51, - 33, - 24,7,13,38,50}
2, 16, 21, 25}, {5, 14,23,24}

- 98, - 82, - 58, - 34, 13, 16, 69, 75, 99} and

- 169, - 161, - 119, - 63, 8, 50, 132, 148, 174}

436, 11857, 20449, 20667, 23750}, {12, 11881, 20231, 20885, 23738} and
133225698289,189880696822, 338027122801, 432967471212, 529393533005},
87647378809, 243086774390, 308520455907, 441746154196, 527907819623}

Chernick discusses symmetric solutions up to size 8 in [4]. Sinha discusses
some parametric ideal symmetric solutions in [18]. There are two solutions of

10
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size 9 and two of size 10 listed; three of these were found in the 1940's

by Letac and Gloden (see [10]). The last solution was found by Smyth who
has shown in [19] that one can generate infinitely many solutions of size 10.

There are no known ideal solutions, symmetric or otherwise, of size 11 or
higher. It has been conjectured for a long time that such solutions exist
for all n, although the only evidence appears to be the existence of solutions

up to size 10.

Smyth's elegant treatment of size ten solutions follows as the next

proposition.

Proposition 4. If x, y are rational solutions of x2y2 - 13x2 - 13y2

+ 121 0 then

{ ± (Ax + Ay), ± (xy + x + y - 11), ± (xy -x-y- 11), ± (xy + 3x - 3y + 11),

± (xy - 3x+ 3y + 11)}

{ ± (Ax - Ay), ± (xy -x + y+ 11), ± (xy + x-y+ 11), ± (xy - 3x - 3y - 11),

±(xy + 3x+3y - 11)}

gives rise to an ideal symmetric solution of size 10.

Proof. This is simply a calculation. After finding the coefficients of the
difference of the polynomials in the second form of the problem, one sees

that all but the constant coefficient are either zero or have x2y2 - 13x2

- 13y2 + 121 as a factor. This is easily done using a symbolic computation
package. It is clear that rational solutions give rise to integer solutions on
clearing denominators using Lemma 1.

Smyth shows in [19] that there are infinitely many rational solutions to the

biquadratic x2y2 - 13x2 - 13y2 + 121 0 which give rise to distinct
symmetric ideal solutions of size 10. The two we have included in the preceding
list correspond to

(x,y) (153/61, 191/79)

and

(x,y) (-296313/249661, - 1264969/424999)

It is interesting to note that any such solution is also a non-symmetric ideal

solution of size 5 with a,-, ß* all squares.
There are various results concerning the divisibility of

n n

c„:= n (x- a,) - n ß/)
/ 1 / 1

where {a,}, {ß/} is an ideal solution.
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Lemma 3. If {a,-}, {ß#} is an ideal solution with Cn defined as

above, then

E?.,ß?
tay P i) ~

/=i n
Cn II (ßy-ttf)

J 1

n (°-j - ß/)
I i

ft a, - ft ß

for all j.

Proof. This is an easy calculation.

Proposition 5. Suppose

is divisible by

Then

Proof. Let

/(*):= £ x«'- £ xh
i 1 / 1

no- *"') •

i 1

A:! Ê n>I ^ a? - ^ ßf •

ii ' - 1 ' - 1

GW

By assumption, the numerator and denominator of the above both have zeros

of order A: at 1. Thus we compute that

ynk_ yn dAt

lim G(x) " ' '
-

by repeated application of Hôpital's rule (applied to xG(x)). But G(x) is a

polynomial with integer coefficients so the result is proved.

Corollary 3. Suppose that {ai, a„}, {ßx, ß„} is an ideal
solution, then (n — 1)1 | Cn.

Proof. This follows from the third form of the problem and the above
Proposition, on observing that (1 - x)n \f(x).
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This corollary is due to Kleiman [12] and Wright [24].

Proposition 6. Let {a/}, {ß/} be an ideal solution of size n. Let

C„: n (x-a,) - n (x-ß,)
/ 1 I 1

as before. 7/ p is prime then

PIC„iff(1 - XP) I Ê *a' - L *ß'
I i / i

Proof. Suppose pk \ Cn but pk + l )f Cn. Then

n

pk I n (ßy - a<) J 1, —, «
Î « 1

and

npk\II((1J - ß/) J
/ 1

In particular for each j
aj ß; mod p

has exactly k solutions (counting multiplicity, in the sense that ay ß/

mod ps (but not mod ps+1) counts as multiplicity s). Likewise, for each j
ß7 az mod p

has exactly k solutions. Now, suppose Ç is a primitive pth root of unity then

j -^i o if aj ß;. mod ps

Thus since {a/} and {ß/} partition, by their congruences mod p, into sets of
multiplicity k, we deduce that Ç is a root of

n n

E xa' - X! *
/ 1 i 1

and hence

(1 - X") I t *°' - t xßi
i 1 i 1

This, with Proposition 5, proves the statement.
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Rees and Smyth have proved many results on the divisibility in [17]. We

state a few of their more interesting results and their summary of results in
the form of a table.

Proposition 7.

1. If p is prime and pk < n for k ^ 1 then pk+l \ Cn.

2. If p > 3 is prime and p n then p\Cn.
3. If p is prime and

n - 3
n + 2^p<n + 2-\

6

then p\Cn.

Proof. See [17].

We define

r„:=gcd {(Cn)

where C„ ranges over all ideal solutions of size n. The following table
demonstrates what is known about rn.

n rn
2 1

3 2

4 2-3
5 2 • 3 5 • 7

6 22 • 3 • 5 I r61 23 • 3 • 5

7 3 • 5 • 7 • 11 I r71 22 • 3 • 5 • 7 • 11 • 19

8 3 • 5 • 7 • 11 • 13 I r81 24 • 3 • 5 • 7 • 11 • 13

9 3 • 5 • 7 • 11 • 13 |/"9|22 • 32 • 5 • 7 • 11 • 13 • 17 • 23 • 29
10 5 • 7 • 13 I r,01 24 • 32 • 5 • 7 • 11 • 13 • 17 • 23 • 37 • 53 • 61 • 79 • 83

• 103 • 107 • 109 • 113 • 191

11 5 • 7 • 11 • 13 • 17 \rn

This table is in [17], We have improved the upper bound for r10 by using
Smyth's solution in [19].

If we restrict our attention to symmetric solutions we can obtain more
divisors of rn.
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Proposition 8. For symmetric solutions we have

19 I r7, 19 I rn 17 • 19 | r13

Proof. This is a result of performing the calculation mod and observing
that Cn 0 mod p.

It is interesting to observe that an ideal solution in its third form has a large
factor

no- *") •

This follows from Propositions 6 and 7. Hence the degree of this polynomial
grows at least like n2/(2 log n).

4. Related Problems

There are several related problems. We mention two.

4.1. The 'Easier' Waring Problem

In [21] Wright stated, and probably misnamed, the following variation of
the well known Waring problem. The problem is to find the least s so that for
all n there are natural numbers {a i, as} so that

± a\± • • • ± aks n

for some choice of signs. We denote the least such s by u(k). Recall that the
usual Waring problem requires al positive signs. For arbitrary k the best known
bounds for v{k) derive from the bounds for the usual Waring problem. So to
date, the "easier" Waring problem is not easier than the Waring problem.
However, the best bounds for small k are derived in an elementary manner
from solutions to the Prouhet-Tarry-Escott problem.

k — 2
Suppose {on a„} {ßi, ß„}. We see that

£ (x + ai)k - £ (x + ß/)* Cx + D
i 1 i=l

where

and

D taf- ßf •

1=1 i 1
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