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L'Enseignement Mathématique, t. 40 (1994), p. 105-107

A NOTE ON TABLE I
OF "BARKER SEQUENCES AND DIFFERENCE SETS"

by Wayne J. Broughton

In Table I of [EK], S. Eliahou and M. Kervaire show the non-existence of
cyclic difference sets with parameters (2t(t + 1) + 1, t2, t(t - l)/2), for
3 ^ t ^ 100, t ^ 50, leaving the case t 50 undecided. The purpose of this

note is to fill this gap and to generalize the table to non-cyclic difference sets.

See any of [EK], [L], or [J] for definitions and notation.
To handle the case t 50 we make use of a multiplier theorem due

to McFarland (see [L], Theorem 5.24, p. 218, or [J], Theorem 4.7, p. 254).

It refers to a function M(z) which has M(1) 1, and (for z ^ 5) is defined

recursively to be the product of the distinct prime factors of the numbers

z,M, p- 1, p1 -1,... <*> - 1

where p is any prime dividing z with pe\z and where u(z) (z2 - z)/2.
(Note that the "definition" of M depends on the choice of p made for
each z.)

Proposition. If D is an abelian (vfk, X)-difference set in G,
and m is a divisor of n: k - X such that M(n/m) and v are
co-prime, and if d is an integer co-prime with v such that for every
prime p | m there exists f ^ 0 with pi d (mod exp(G)), then d is
a numerical multiplier of D.

Now when t 50 we have u 5101, a prime, (so G Z5l0l), and
n 1275 3 • 52 • 17. Let m 3 • 17. So n/m 52, and 52) has as
factors the prime factors of

52,M(1), 5 - 1, 52 - 1, 5300 — 1

since w(25) 300. But the multiplicative order of 5 modulo 5101 is 425, so
M(25) is not divisible by u 5101. Moreover,

3 1088 s 171 (mod 5101)
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so by the proposition d 17 is a multiplier of any (5101,2500,1225)-
difference set.

But the non-trivial orbits of multiplication by 17 in Z510i are all of
size 75, so it is impossible for a union of orbits to have size 2500 and hence

no such difference set exists.

The primary non-existence theorem used in Table I of [EK] to eliminate
difference sets is what they call the Semi-Primitivity Theorem (see Theorem 4.5

of [L] or Theorem 7.1 of [J]). Since this theorem actually applies to abelian
difference sets (not just cyclic ones), it can also be used to eliminate almost
all of the abelian difference sets in the range 3 ^ t ^ 100. The only (non-cyclic)
abelian case to which the theorem does not apply is t 49, where the

parameters are (4901,2401, 1176) and n 1225 352. This is easily
eliminated by Theorem 4.18 of [L]. Since 4901 132 • 29, we can (using
Lander's notation) take a subgroup H in G of order h - 29, and let m - 35.

So m21 n, and m is semi-primitive mod | G/H | 169 since 526 778 - 1

(mod 169); but by the theorem this implies h ^ m (note the misprint in [L]),
which is a contradiction.

Next, the only values of t e {3, 100} for which there exists a non-
abelian group of order v 2t(t + 1) + 1 are t 26, 28, 36, 41, 48, 51, 52,

66, 73, 76, 86, 88, 96, and 98. In every one of these cases we can apply
Theorem 4.4 of [L] (Theorem 7.6 in [J]), using the semi-primitivity relations

already listed in Table I of [EK].
So we conclude that there do not exist any (2t(t + 1) + 1, t2, t(t - l)/2)-

difference sets for 3 ^ t ^ 100.

We now point out a few misprints in Table I:

(i) At t 12, v should be "313" (a prime), not "3 • 13".

(ii) At t 17, the semi-primitivity relation should read "351 - 1

(mod 613)".

(iii) At t 28, the factorization for n should read "2-7-29".
(iv) At t 61, v should be "5 • 17 • 89".

S. Eliahou and M. Kervaire have also pointed out that on page 375 the

polynomial 0o(y) should read

y3 + y6 + y1 + y9 + y11 + y12 + y13 + y14

Finally, they also requested mention of the fact that at the time of writing
[EK], they were not aware of the paper [C], which contains the complete
classification of (255, 127, 63) cyclic difference sets and should have been

included in their bibliography.
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