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10. Appendix

This appendix contains results due to Brian Bowditch, published here with

his permission.
We recall that a finite-sided closed convex cell of H" + 1 is said to be

pyramidal at an ideal point p if any two faces whose closures contain p meet

in H" + 1. The intersection of such a convex cell with a horosphere centred

at p is a euclidean finite-sided closed convex cell of dimension « (provided the

horosphere only meets faces which have p as an ideal point). One way to see

this is to use the upper half-space model with p equal to the point at infinity.
Conversely, given a convex finite-sided «-dimensional euclidean cell, we can

think of this cell as lying in a horosphere which is a horizontal subspace in
the upper half-space model. This gives rise to an (« + l)-dimensional
hyperbolic convex cell, by taking the intersection of vertical half-spaces
determined by the half-spaces defining the euclidean convex cell. We use the

names "pyramidal" and "non-pyramidal" for convex euclidean cells if the

corresponding hyperbolic cells are pyramidal or non-pyramidal respectively.
A euclidean convex cell is non-pyramidal if and only if it has disjoint faces.

If a euclidean cell is pyramidal, then there is a face which is the intersection
of all other faces, that is there is a unique minimal face. A pyramidal euclidean
«-cell is the product of an /-dimensional cell with the cone on a spherical
(« - / — l)-dimensional cell. (The cone point is placed at the centre of the

(« - / - l)-dimensional sphere.)
Let M be a connected euclidean similarity «-dimensional manifold which

is the union of a locally finite set of closed subsets {X/}. Each Xt has an
induced similarity structure which is isomorphic to that of a closed finite-sided
euclidean convex polyhedron. There are only a finite number of distinct
similarity classes of Xt. The intersection of any face of any Xf with any face
of any X} is a common face of each. This implies that M has the structure
of a locally finite polyhedral cell complex. Let G be a group of similarities
of M which preserve the cell structure. Suppose that the number of orbits of
non-pyramidal polyhedra is finite.

Theorem 10.1 (Bowditch). Under the above assumptions, the number of
orbits of cells is finite. Moreover, the number of orbits is bounded in terms
of the number of orbits of non-pyramidal cells and the geometry (up to
similarity) of the Xx.

Bowditch has suggested that if there is one or more pyramidal polyhedral
cell, then one should be able to prove that G is a finite group. It would follow
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that G consists of euclidean isometries and that M contains only a finite
number of cells. This conjecture remains open.

Proof of 10.1. Let X be the union of the non-pyramidal cells in M, and
let Y be the union of cells which meet X. Note that X C Y.

Now suppose there is a top-dimensional cell which is not in Y and let o
be its unique minimal face. Then o is similar to R' for some i. If a is any cell

meeting o, then o C a since o is minimal. Clearly a is not in X. Therefore
a is the unique minimal face of a. We have seen above that a is the product
of a and the cone on a convex subset Sn~'~1. It follows that the union of the
cells meeting g is the product of o with the cone on S"~/_1. It follows that
the cell structure of M is finite, G is a finite group and X 0. The other

possibility is that Y - M.
Let K C X be a finite union of cells such that GK X. The cell structure

of M is locally finite, with a bound for the number of cells in any small

neighbourhood being given by the geometry of the Xt. The number of cells

of M which meet K is bounded by the number of cells of K and the maximum
possible number of cells meeting a fixed small neighbourhood of any fixed
point of K. This gives an upper bound for the number of orbits of cells of
M under the action of G in case Y M. If X Y 0, then the number of
cells of M is bounded by the geometry of the Xt.

We apply Theorem 10.1 to find out a litte more about the spaces that
arise in Poincaré's Theorem. Suppose the hypotheses Pairing(^, R, A),
Connected(^, R), Finite(^) and Cyclic(^, R, A) are satisfied for a set of
convex cells (see Definition 2.8) in H". To each convex cell we adjoin the
ideal points, so as to obtain a compact space. The face-pairings are defined

on the closures of the faces. Let Q be the quotient of the disjoint union of
the extended cells by the face-pairings, endowed with the quotient topology.

Theorem 10.2. Q is a compact hausdorff space.

Proof of 10.2. Let X be the disjoint union of the closures of the convex

cells. So X is compact and hausdorff. We first show that the inverse image

of a point under the quotient map X -> Q is a finite set. This is clear from
Theorem 4.13 for any point which is not an ideal point. For an ideal

point p, we can construct a similarity manifold to which Theorem 10.1 applies,

by developing a horosphere centred at p into Rn l. More details, which will

help the interested reader with the construction of the similarity manifold, are

given in the discussion of Definition 6.2.
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A pyramidal cell in R"~1 corresponds to a convex cell in H" together with

an ideal point p in its boundary, such that any two faces with closures

containing p meet inside H". A non-pyramidal cell corresponds to a convex
cell in H" and an ideal point p contained in the closures of two non-
intersecting faces of the convex cell. The hypothesis needed in order to apply
Theorem 10.1, that there are only a finite number of orbits of non-pyramidal
cells, comes from the fact that there are only a finite number of pairs of faces

and therefore only a finite number of pairs of non-intersecting faces which
meet at infinity.

It follows that the inverse image in X of any point of Q is finite.
Moreover the number of points in the inverse image is bounded by a fixed
integer N. Two points x,yeX are mapped to the same point of Q if and

only if there is a sequence (x0,...,x„) such that x x0, y xn and

xi+i A (Ff) (Xj), where xf e Fi and xi+ï e R(Fi). (Here (R, A) is the glueing
data.) We may take n ^ N. It follows easily from compactness and the
finiteness of the situation that the map X -> Q is closed. Therefore Q is

hausdorff.
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