
SYSTEMS OF CURVES ON A CLOSED
ORIENTABLE SURFACE

Autor(en): EDMONDS, Allan L.

Objekttyp: Article

Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 42 (1996)

Heft 3-4: L'ENSEIGNEMENT MATHÉMATIQUE

Persistenter Link: https://doi.org/10.5169/seals-87881

PDF erstellt am: 12.07.2024

Nutzungsbedingungen
Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in
Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss
Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung
übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot
zugänglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

https://doi.org/10.5169/seals-87881


L'Enseignement Mathématique, t. 42 (1996), p. 311—339

SYSTEMS OF CURVES

ON A CLOSED ORIENTABLE SURFACE

by Allan L. EDMONDS

1. Introduction

It is well-known that a nontrivial one-dimensional homology class on a

closed orientable surface F is represented by a simple closed curve in F if
and only if it is primitive, i.e., indivisible. See Myerson [1976], Bennequin

[1977], and Meeks-Patrusky [1978]. (There is also a partial result in Kaneko-

Aoki-Kobayashi [1963].) Here we study the more general question of when

a collection of pairwise distinct homology classes is represented by a set of
corresponding pairwise disjoint simple closed curves. We first introduce the

following necessary conditions.

THEOREM 1. Let F be a closed orientable surface and let S C H\(F) be

a set of pairwise distinct nonzero homology classes. If S is represented by

a corresponding set of pairwise disjoint simple closed curves in F then the

following three conditions are satisfied:

1. INTERSECTION Condition. The intersection pairing of F vanishes on S.

2. SUMMAND Condition. Every subset T of S spans a direct summand

span T of HfiF).

3. Size Condition. For every subset T of S of more than one element
card T < 3 rank span T — 3.

Here we say that two homology classes a and ß are distinct if
and a/-/3. Although linear algebraic in nature, the Summand Condition

Research supported in part by the National Science Foundation.
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312 A. L. EDMONDS

and Size Condition can be a little tricky to check in specific cases. None of
these three conditions follows from the others in general.

We then investigate the attractive conjecture that these natural necessary
conditions are in fact sufficient. In this direction we begin with the case of
independent homology classes.

THEOREM 2. Let F be a closed orientable surface and let S C H\(F) be

a set of pairwise distinct, independent, and indivisible homology classes. Then

S is represented by a corresponding set of pairwise disjoint simple closed

curves in F if and only if the Intersection Condition holds and S spans a
summand of H\{F).

Here is a simple interpretation of the Theorem 2 in the case of just two
homology classes, which is the case with which the present investigation
started.

COROLLARY. Let F be a closed orientable surface of genus g > 2 and
let ol\,oli G Hi(F) be two distinct homology classes. Then a\ and a2 are
represented by disjoint simple closed curves in F if and only if ol\ and a2
are indivisible, a\ • <22 0, and oli is indivisible in H\{F)/{ot\).)

Here are some simple interpretations of these basic results. Let

<Yi, /?!, a2l ß2, • OLg,ßg

denote a standard symplectic basis for the homology of F. In particular,
this means that these homology classes are represented by simple closed

curves

^1,^1,^2,^2, • • • ,Ag,Bg

in F such that the A; are pairwise disjoint, the Bj are pairwise
disjoint, and if A; O Bj f 0, then i j and A/ f) Bj a single point of
transverse intersection. Then the corollary says that a.\ and 2a 1 F a2 are

represented by disjoint simple closed curves, as one can easily check by
hand, drawing suitable pictures. On the other hand, a\ and ol\ + 2a2 are

not so represented. Note further that one can represent the three classes

ai Q2, and ot\ + ot2 by disjoint simple closed curves, by explicitly drawing
the curves. By Theorem 1, no more than 3 such classes can be so represented

on a surface of genus 2. On a surface of genus 3 one can easily construct 6

pairwise disjoint simple closed curves representing distinct homology classes.
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Again, Theorem 1 implies that on a surface of genus 3 one cannot realize

7 distinct classes this way. And so on. More subtle examples will be discussed

later.

To consider the more general cases of not-necessarily independent homology

classes we introduce the following terminology. Define the rank of S,

rank S, to be the rank of the integral span of S in H\(F). And define the

excess of S, excess S, to be card S — rank S. Through a fairly painstaking and

increasingly subtle analysis we are able to prove sufficiency of the conditions

above when either the excess or rank is not too big.

THEOREM 3. Let F be a closed orientable surface and let S C H\(F) be

a set of pairwise distinct nonzero homology classes satisfying the Intersection

Condition, Summand Condition, and Size Condition. Then S is represented

by corresponding pairwise disjoint simple closed curves in F provided that

either excess S <3 or rank S < 4.

The increasing difficulties encountered while attempting to extend the result

of Theorem 3 eventually led to a family of counterexamples as described in

the following result.

THEOREM 4. Let F be a closed orientable surface of genus at least 5.

Then there is a family S C H\(F) of 9 pairwise distinct nonzero homology

classes satisfying the Intersection Condition, Summand Condition, and Size

Condition and having excess 4 and rank 5 that is not representable by a

corresponding family of pairwise disjoint simple closed curves in F.

In particular Theorem 4 destroys all sorts of natural inductive approaches

to proving realizability of families of homology classes by pairwise disjoint
simple closed curves. We include in Section 7 of this paper some additional

examples that illustrate the difficulties in proving realizability, including an

example of realizable homology classes such that there is a realization of all
but one of them that cannot be extended to a realization of the whole family.

A natural hope would be that perhaps the necessary conditions in Theorem 1

are at least sufficient after suitable stabilization or connected sum with a

suitable number of tori. But this turns out not to be the case.
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THEOREM 5. Let F be a closed orientable surface and let S C H\(F) be

a set of pairwise distinct nonzero homology classes satisfying the Intersection
Condition, Summand Condition, and Size Condition. Suppose that the

corresponding set of homology classes in F#F\ is represented by corresponding
pairwise disjoint simple closed curves in F#F\ for some closed orientable

surface F\. Then S is represented by corresponding pairwise disjoint simple
closed curves in F.

The analysis in Theorems 3 and 4 is based upon realizing a maximal
subcollection of independent classes by simple closed curves and then cutting

open the given surface to form a surface with boundary. This surface can

effectively be viewed as being planar. Then the problem of realizing any
remaining classes is reduced to lifting the classes to homology classes in
the punctured surface (which are not uniquely defined) and realizing them
there. Thus we also include a preliminary step in which we give a complete
analysis of the corresponding but much easier problem of realizing a family
of homology classes in a compact planar surface by pairwise disjoint simple
closed curves. One attractive statement in this context is that a family of
homology classes in a planar surface is realizable by a corresponding family
of pairwise disjoint simple closed curves if and only if each subcollection

of two elements is so realizable. The analogue of this statement for closed

surfaces is false.

An important consequence of this analysis of planar surfaces is the

following result.

THEOREM 6. Let F be a closed orientable surface and let S C H\(F) be

a set of pairwise distinct nonzero homology classes satisfying the Intersection

Condition, Summand Condition, and Size Condition. Then there is a finite
(but "exponential") algorithm for deciding whether S can be represented by

corresponding pairwise disjoint simple closed curves in F.

We have written computer programs in Maple that in principle can carry
out such an algorithm. Unfortunately, at the time of this writing the first

interesting cases are too large for the current version of the programs to be

effective. (The program did assist in enumerating the cases where rank S — 4

that were analyzed in Theorem 3.)

It is elementary to see that any family of homotopically nontrivial and

nonparallel pairwise disjoint simple closed curves in a surface of genus g

can be extended to a maximal family of 3g — 3 such simple closed curves.
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We conclude by proving an analogue of this for homologically nontrivial and

distinct curves.

THEOREM 7. Let F be a closed orientable surface of genus g > 2, and let

S C H\{F) be a set of pairwise distinct nonzero homology classes represented

by a corresponding family of pairwise disjoint simple closed curves in F.
Then this family of simple closed curves can be extended to a family of 3g — 3

pairwise disjoint simple closed curves in F representing nontrivial, pairwise
distinct homology classes in HfF).

Here is a summary of the contents of the rest of the paper : Section 2

contains the proof of Theorem 1 deriving the fundamental necessary conditions.

Sections 3 and 4 deal with the cases of one homology class and with

independent homology classes, and provide two proofs of Theorem 2. In

Section 5 we give an analysis of simple closed curves on a planar surface.

In Section 6 there is the proof of the main positive realizability statement,
Theorem 3, ending with a discussion of Theorem 6. In Section 7 we present
several examples that illustrate some of the subtleties involved in finding
a more complete and definitive result than that given here, including the

nonrealizability result stated as Theorem 4. Finally in Section 8 we give the

proofs of Theorem 5 and 7.

The author acknowledges helpful conversations with Chuck Livingston,
especially in the early stages of this work, useful comments from Michel
Kervaire, and the hospitality of the Max Planck Institut für Mathematik in
Bonn, where some of the work was completed.

2. Necessary conditions

It is quite clear that the Intersection Condition must hold, since the
intersection number of two disjoint 1-cycles is necessarily 0. The necessity of
the Summand Condition follows immediately from the following lemma.

LEMMA 2.1. Let F be a closed orientable surface of genus g > 1 and
let S C H\(F) be a set of pairwise distinct homology classes represented by
ci corresponding set of pairwise disjoint simple closed curves in F. Then the
image of S spans a direct summand of HfF).
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Proof. Let A c F be the union of the simple closed curves representing
the elements of S in H\{F). Consider the long exact homology sequence of
the pair (F,A).

• Hi (A) -+ Hi (F) H\ (F, A) -> • • •

Now the linear span of S in HfF) is identified with the image of HfA)
in H\(F). But HfF.A) is free (by Poincaré Duality), so we see that the

image of H\{A) is a direct summand, as required.

The following result gives the Size Condition. The construction described

in the proof below will be important, as it describes an effective way to

approach the problem of explicitly realizing a system of pairwise disjoint
curves.

LEMMA 2.2. Let F be a closed orientable surface of genus g > 1,

let S C H\{F) be a set of pairwise distinct homology classes represented
by a corresponding set of pairwise disjoint simple closed curves in F, and
let n rank span S. Then card S < max{3n — 3,1}.

Proof If n — 1, then it follows from Lemma 2.1 that S must consist

of a single element, and the desired inequality trivially holds. Henceforth we
assume that n > 1. The proof in this case will amount to cutting the surface

up into pieces along the given simple closed curves and using the pieces to

calculate the euler characteristic of the surface. It is easy to see that g > n.
We will first assume that g n. At the end we will indicate how to modify
the proof to handle the case g > n.

Let D],..., (y.n G S form a basis for span S and let Ai,... ,A„ be the

corresponding disjoint simple closed curves in F. Let 71,..., ym G S be

the remaining elements of S and Q,..., Cm be the corresponding disjoint
simple closed curves in F. Let F denote the surface F cut open along the

A/. Then F is a connected, orientable surface and has 2n boundary curves
and genus g — n 0. Note that y(f) x(F) by the sum formula for euler

characteristics. In F each of the m card S — n curves Cj is homologous to

a sum of boundary curves, with multiplicities ±1, since Cj does not separate

F, but does separate F. Now F — F — UCj still has genus 0 and consists

of m + 1 planar components Xi. Again note that x(F) x(F). No Xg can

be a disk, since otherwise its boundary curve would be nullhomologous in

F. Similarly, no Xi can be an annulus, since otherwise, the two boundary

curves, belonging to the original collection of curves would represent the same
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homology class in F, up to sign. It follows, therefore, from the classification

of surfaces, that each Xi has Euler characteristic < — 1. Therefore, when

n > 1 and n g,

\</-> x(F)=2 -In=J2x(Xe)<(card S-n+ 1)(-1)

or equivalently card S < 3n — 3, as required.

It remains to consider the case when g > n > 1. In this case, we first

proceed as before, cutting open along the A/, obtaining a connected surface

F of genus g — n and with In boundary curves, containing the m curves Cj,
each of which is homologous to a sum of boundary curves in F. Now each

of the Cj separates F, and we may further cut open along the Cj, obtaining
a surface with m + 1 components and total genus g — n. It follows that there

are additional pairwise disjoint simple closed curves £*, k — 1,..., g — n, in

F, reducing F to a planar surface of genus 0 when we cut open along the

Ek and cap off the resulting 2(g — n) boundary curves with disks. Call this
latter surface F, topologically a 2-sphere with 2n holes. Now the Cj separate
F into m + 1 card S — n + 1 planar components Xi. As before, each X£

has Euler characteristic < — 1. Therefore, again,

X(F)=2-2« ^ X(2Q) < (card - 1) (-1)

or equivalently card S< 3n —3, as required.

3. Sufficiency for a single homology class

Here we collect some basic information about the embedding of a single
simple closed curve in a surface, and offer an alternative, elementary proof
of Theorem 2 for the well-known case of a single homology class.

Lemma 3.1. Anonzero homology class a H^F) is primitive if and
only if there exists y £ Hi (F)suchthat 7 • 1.

Proof A nonzero element of a finitely generated free abelian group is
primitive if and only if it is part of a basis if and only if there is a Z-valued
homomorphism that takes the value 1 on it. Recall that taking intersection
numbers of 1-cycles defines a skew symmetric bilinear form on HfF). The
content of Poincaré Duality in this situation is that this bilinear form is
nonsingular, that is, the adjoint homomorphism HfF) -* Horn is
an isomorphism. The lemma then follows.
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LEMMA 3.2. Any homology class a G H\{F) can be represented by an

immersed, oriented closed curve on F and also by an embedded, oriented
1 -submanifold.

Proof The Hurewicz homomorphism n\{F) —» HfF) is onto. Compare
W. Massey [1980], Chapter III, Section 7, for example. Any map S1 —> F can
be approximated by an immersion, with only isolated double points. One can

surger any double points, that is, one can replace any pair of small oriented

arcs having a single transverse intersection with a pair of parallel oriented

arcs with the same end points and lying within a regular neighborhood of the

intersecting arcs. In this way one creates a disjoint union of oriented simple
closed curves representing the same homology class.

PROPOSITION 3.3. A homology class a in H\(F) can be represented by

a simple closed curve on F if and only if a is primitive.

Proof We sketch a 2-dimensional version of the argument of Bennequin
[1977]. If a simple closed curve represents a nonzero homology class, then

it is nonseparating. It follows that there is a simple closed curve that meets

it transversely in a single point. This implies indivisibility, by the homology
invariance of intersection numbers.

For the converse, we may assume that a is nonzero. We begin by
representing a by a disjoint union A of oriented simple closed curves, as in
Lemma 3.2. We shall assume that A contains the smallest possible number

of components and show that this number can be reduced unless it is 1 or it
is equal to the divisibility of a.

Cut open F along A-that is, remove the interior of a small tubular

neighborhood of A. The boundary of the cut open surface F consists of two

copies Af and Af of each component Ai of A, each of which we orient

as the boundary of the orientable surface F. The positive components Af
have the same orientation as A/, while the negative components Af have the

opposite orientation.

If some component R of F contains in its boundary two positive curves

Af and Af (or two negative curves), then they can be banded together in an

orientable way using a band in R. That is, one chooses an embedded arc 6

in R meeting Af and Af in its two end points only. One then replaces A;
and Aj with the single simple closed curve obtained by removing small arcs

in Ai and Ay containing the end points of 6 and inserting in their place two
embedded arcs parallel to 6. This would reduce the number of components
of A. If some component R has boundary just Af and Af for some A/,
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then we can conclude that A is connected and we are done. If some R has

more than two boundary components, then it contains two positive curves or

two negative curves, and we can proceed as above to reduce the number of

components of A.
It remains to consider the case where each component Rk of F has exactly

two boundary components of the form Af and Aj~, where A/ and Ay are

distinct components of A. In this case we conclude that we can arrange the

components of A in a sequence Ai,A2, • • • ,A„, so that A\ is homologous to

A2, A2 is homologous to A3,... ,An is homologous to A\. In this case, then,

the number n of components is exactly the divisibility of a.

4. Sufficiency for independent homology classes

In this section we complete the proof of Theorem 2, dealing with the case

of a set of homology classes consisting of independent elements.

LEMMA 4.1. Let F be a closed orientable surface and let a\..... an
G Hi(F) be independent homology classes that span a summand of H\{F)
on which the intersection pairing of F vanishes. Then there exists 7 G H\ (F)
such that 7 • an 1 and 7 • ay 0 for i < n.

Proof This is a consequence of Poincaré Duality.

PROPOSITION 4.2. Let F be a closed orientable surface and let C7,..., an
G H\(F) be independent homology classes that span a summand of H\(F)
on which the intersection pairing of F vanishes. Then there exist pairwise
disjoint simple closed curves Ai,..., A„ in F representing the homology
classes ol\.., an.

Proof. The proof will proceed by induction on n. The case n 1 is
given by Proposition 3.3.

Now inductively consider the case of n > 1 homology classes. By
Proposition 3.3 we can find a simple closed curve An in F representing
an. We claim that there is a simple closed curve Bn in F representing a

homology class ßn such that Bn meets An in exactly one point and such that
[Bn] 0 for i < n. By Lemma 4.1 there is a homology class yn G H\{F)
such that a, 7,, 6^,,.We begin by representing 7,, by a simple closed curve
B transverse to An.Bytubing together neighboring pairs of intersection of
B with An of opposite sign we can transform B into a disjoint union B'
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of simple closed curves meeting An in exactly one point. Now we can band

together the components of B', using bands in the complement of An to

create a closed curve B" representing and meeting An in exactly one

point. But B" may now have self-intersections. We may then eliminate the

self-intersections by sliding segments of B" over An. This creates a simple
closed curve Bn meeting An in exactly one point, and representing a homology
class of the form ßn -f kan, which proves the claim.

Now the union of the two curves An and Bn has a small neighborhood N
of the form of a once punctured torus. Let Fn denote the result of removing
N and replacing it with a disk D. Then Fn — D F — N C F and inclusion
identifies H\{Fn) with the orthogonal complement of an and ßn in H\(F).
Thus the homology classes ai,..., an-\ determine well-defined classes in

H\(Fn), which we continue to call by the same names. By induction there are

pairwise disjoint simple closed curves Ai,...,An_i in Fn representing the

homology classes ai,..., an-\. Then these curves also live in F, determining
the same homology classes, and are disjoint from the curve An. This completes
the proof.

Here is a sketch of a standard but somewhat more learned proof of
Proposition 4.2, suggested by M. Kervaire : Any basis for a self-annihilating
summand of a skew-symmetric inner product space over Z can be extended

to be part of a symplectic basis. Any two symplectic bases are related by
an isometry of the inner product space. Half of a fixed standard symplectic
basis is clearly represented by standard pairwise disjoint simple closed curves
in a standard model of the surface. And any isometry is induced by a

homeomorphism of the surface, so that the standard curves are taken to

the desired curves. To see that any isometry is induced by a homeomorphism

one can argue that the symplectic group is generated by certain elementary

automorphisms and that these elementary automorphisms are induced by Dehn

twist homeomorphisms around standard curves on the surface.

5. Disjoint simple closed curves on a planar surface

Subsequent proofs of realizability of non-independent homology classes

will proceed by cutting the surface along curves representing a basis for

homology until it becomes a punctured 2-sphere and then representing the

remaining homology classes by disjoint curves on this planar surface. We
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therefore first investigate directly the case of homology classes in a planar

surface.

In this section G will denote a compact orientable planar surface with

with m oriented boundary components By the classification of

surfaces G can be thought of as being obtained from the 2-sphere by removing

the interiors of m disjoint disks. Now H\(G) is freely generated by the

homology classes [B/], subject to the single relation

By the Schönflies Theorem any simply closed curve G in G divides G

into 2 parts, showing that any such G is homologous to a sum of boundary

curves, up to global sign. That is, we have half of the following lemma.

LEMMA 5.1. A homology class 7 G HfG) is represented by

a simple closed curve if and only if S/ G {0,+1} for all i, or et G {0, — 1}

for all i.

Proof It remains to show that a given 7 ^£/[#/] G H\(G), with

£i G {0,1} is represented by a simple closed curve. One can organize this

process by choosing a tree in G meeting only the boundary curves Bt with
coefficient £/ 1, and then only in one point for each such Bt. The desired

simple closed curve can be chosen to be the interior boundary of a small

regular neighborhood of the union of the tree and the boundary curves it
meets.

Note, for example, that [Bil + fZU] is represented by a simple closed curve,
while [2?i] — [B2] and [B\] + 2[B2] are not.

We call a homology class, as in the statement of Lemma 5.1 a basic class.

Notice that if 7 is basic, then so is —7. Notice also that a nonzero basic
class has a unique representation with all nonnegative coefficients. There are
2,n — 1 nonzero basic classes, then, that we want to consider.

We now consider a family of homology classes 71,... ,7^ G HfG) and
ask when they can be represented by pairwise disjoint simple closed curves
in G. Using the above lemma together with the fundamental defining relation
for the homology of G we may as well assume that each

It- Yj
where each e-y {0,1}. Now all intersection numbers in G necessarily vanish,
so there is no analogue of the Intersection Condition from Theorem 1.

If aX)£/[#,•] <2 Hi(G) then we define the partition of a, denoted
part a{C, D},to be the partition of the set {[2?,-] : 1consisting
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of the set C of [Bß that have nonzero coefficients £t and its complement D.
Note that since the representation of a as such a linear combination is not
unique, it is necessary to include discussion of the complementary sum. Note
also that a and —a have the same partitions.

PROPOSITION 5.2. Two basic classes oq,a2 G H\{G), with corresponding
partitions part cq {C,, A}, are represented by two disjoint simple closed

curves in G if and only if a\ and <%2 are individually represented by simple
closed curves and C\ C C2 or C\ Cft-

Proof sketch. The point is that the tree used to determine a simple closed

curve Ai for a\ does not separate G. Therefore, if the support of <22 > or its

complement, is disjoint from the support of a\, then one can find a tree for
D2 in the complement of the tree for a\ and the boundary curves it touches.

The proof of Proposition 5.2, extends inductively to prove the following
result.

PROPOSITION 5.3. A set of homology classes S {ai,..., af\ C H\(G),
with corresponding partitions part(aj) ess {Q, Di}, is represented by a

corresponding set of pairwise disjoint simple closed curves in G if and

only if each a/ is individually represented by a simple closed curve and for
each ij Ci C Cj or Ci C Dj.

COROLLARY 5.4. A set S of homology classes in H\(G) is represented by

pairwise disjoint simple closed curves in G if and only if any two elements

of S are represented by disjoint simple closed curves in G.

The analogue of the preceding result will be seen to fail for closed surfaces.

COROLLARY 5.5. A set S of pairwise distinct homology classes in HfG)
that is represented by pairwise disjoint simple closed curves in G has at most
2m — 3 elements, including the boundary curves.

Proof. It suffices to assume that S contains no classes homologous to

boundary curves and to show that card S < m — 3. Let k card S and let A
denote the union of a set of disjoint simple closed curves in G representing
the elements of S. The realization of each element of S divides G into 2 parts.
The k elements then divide G into k +1 parts Xg. Since the classes in S are

not parallel to boundary classes, the components Xg of G cut open along the
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simple closed curves representing the elements of S all have negative Euler

characteristic. Therefore 2 — m x(G) — XX XÄ) ^ + 1)(^D- It follows

that k < m - 3, as required.

In general there are many apparently different ways to realize realizable

homology classes. But up to homeomorphism we have the following uniqueness

result.

THEOREM 5.6. Suppose that a set of homology classes S {on,..., af] C

H\(G) is represented by two different families Ai, A2,..., Ak and A[, Af A'k

of pairwise disjoint simple closed curves in the planar surface G. Then there

is a homeomorphism f : G —> G inducing the identity on homology such that

f{Aj)=A'j for 7=1,...,*.

We note that the analogue of Theorem 5.6 for closed surfaces is false. We

also note that this result shows that in the process of realizing a realizable

family of homology classes one-by-one, one cannot get "stuck", which can in

fact happen in the case of closed surfaces.

Proof of Theorem 5.6. The overall argument will be by induction on the

the number k of homology classes in question. We can assume that G has at

least 3 boundary curves. Then any homeomorphism inducing the identity on

homology will map each boundary component into itself. It follows that we

can assume that the set S of homology classes contains no boundary classes.

First consider the case k 1 of just one non-boundary class a\ and two
different simple closed curves A\ and A[ realizing it. Note that the same

boundary curves appear on corresponding sides of A\ and of A\. It follows
easily from the Schönflies Theorem that there is a homeomorphism moving
A\ onto A] and preserving the corresponding sides. One can then arrange
that this homeomorphism induce the identity on the boundary by composing
with a homeomorphism that appropriately permutes the boundary curves while
leaving A\ invariant. To argue this in a little more detail, let G denote the

2-sphere obtained by collapsing all the boundary curves to single points. The
the usual Schönflies Theorem shows that there is a homeomorphism of G

mapping A! onto A\. By composing with a homeomorphism that exchanges
the two sides of A\ if necessary, we can assume that this homeomorphism
maps the complementary domains of A\ to the corresponding complementary
domains of A\. Then homogeneity shows that one can further arrange that
this homeomorphism can be arranged to map each ideal point to itself. One
can then "blow up" the ideal points to the original boundary curves.



324 A. L. EDMONDS

Now, proceeding inductively, consider the case of k > 1 homology classes.

One of these homology classes, say a*, has a minimal partition C^Dk, in
the sense that C& contains no other Cj or Dj for j< k. By the preceding

argument we may assume that A& Aj. One side of A& contains no other

simple closed curves Aj or Aj. Excise this side to obtain a new planar surface

H containing the remaining simple closed curves. By induction there is a

homeomorphism h of H moving Aj onto Aj for 1 <j<k-1. and mapping
each boundary curve into itself. We can then reinsert the excised domain to

complete the argument.

The results of this section, with the exception of Theorem 5.6 above, hold
mutatis mutandi for compact non-planar surfaces G with boundary, provided
one only considers homology classes given as linear combinations of the

classes represented by the boundary curves. Each such simple closed curve in
the interior of G would separate G. Uniqueness, however, is obstructed by
needing to know the genus of each complementary domain.

Let S C H\(F) denote a finite set of distinct homology classes satisfying
the Intersection Condition, the Summand Condition, and the Size Condition
of Theorem 1, which we wish to represent by pairwise disjoint simple closed

curves. Suppose that the linear span of S has rank n and extract from S n

elements oq,..., an that form a basis for this span. Now each element 7; in
the remaining subset T of S can be expressed as a linear combination

We refer to the 7\ as "composite classes."

LEMMA 6.1. Each coefficient £7 in the linear combination 7% Jfj£Uaj
is 1, —I, or 0.

Proof. To see this, consider the span of the set consisting of any one

7/ together with all k f j. Elementary change of basis operations show

that this span is the same as the span of and the ak, k f j. By the

Summand Condition, this span must be a summand, and it therefore follows
that Eij ±1 or 0.

6. Sufficiency in Theorem 3

j
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If card T m, then the collection of all 7; G T can be described by an m

by n matrix M of O's, 1's, and — l's. Then the proof of Lemma 6.1 extends

to give the following consequence of the Summand Condition.

Lemma 6.2. Each square submatrix N of M has |detA/j < 1.

Proof Let N be a k x k submatrix. Up to relabeling we may

assume that N consists of the 1 < ij < k. Now consider the span

of 71,... ,7*, cty+i,. ..,an. On the one hand, the Summand Condition says

that this span must be a direct summand. On the other hand, the span is

the same as the span of 71,... ,7^, o^+i,..., a„, where 7/ J2j<k£Uaj
the projection of 7; into the span of But this span is clearly
the direct sum of the span of 71,..., 7^ and of ck*+i,... ,an. It follows
that the span of 71,... ,7^ is a direct summand of the span of oq,... ,07.
Standard matrix theory then implies that the determinant of the matrix of
coefficients of 71,...,% is ±1 or 0. But this matrix is the upper left
matrix N.

In what follows here we will assume that F has genus n. By this we

mean that there is a corresponding set of homology classes in a surface of
genus n, and that we may view the given surface as being obtained from the

genus n surface by attaching handles. It is clear that if the homology classes

can be realized in the surface of genus n, then they can be realized in the

given surface. The converse of this statement is also true, but less obvious.
We will prove it in a subsequent section.

We may also assume that we have already represented elements aq,..., an
by disjoint simple closed curves elements Aj,... ,A„, by Proposition 4.2. We

attempt to represent the remaining classes in T, the complement of ct1,..., an
in S. Let F denote F cut open along the A/. Then F is a 2-sphere with In
holes, with orientable boundary consisting of one copy Af of each A/ and

one copy A~ of each A/ with its orientation reversed.

By the results in Section 5 we understand completely when a family of
homology classes in F can be realized by pairwise disjoint simple closed
curves. We need to see how to lift the classes in T to realizable class in F.
Now HfF) is generated by the classes [AfJ and [Af] subject to the single
relation ([AT] + [A~]) 0. The natural inclusion of F in F induces a

homomorphism HfF) -> HfF) where [Af] [A/] and [Ar] -[A/]. This
homomorphism maps surjectively onto the subgroup generated by Ab ,An.
Its kernel is generated by terms of the form [Af] + [A~] subject to the single
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global relation ] + [A~]J 0. We will slightly abuse notation and

suppress the square brackets from such formulas below.

LEMMA 6.3. Any single element 71 G T can be realized by a simple
closed curve in F.

Proof. Write 71 as above, with e\j G {0, ±1}. By replacing

some of the aj with —olj as necessary, we can assume that 71 Ylj=\aj-
The corresponding homology class 71 « X7L1 in F is then represented

by a simple closed curve, as required.

LEMMA 6.4. If aj and ak both have nonzero coefficients in the expansions

of both of 71 and 72, then either £\j £2j and £\k — £ik or £\j —eivj
and £\k —£2k- That is, the coefficients either agree or disagree.

Proof. If not, the matrix M representing the 7; has a 2 by 2 submatrix
of the form

up to multiplying rows and/or columns by — 1, contradicting the matrix

interpretation of the Summand Condition as given in Lemma 6.2.

For 7i G T define its support (with respect to {ai,..., an}) to be the set

of aj with nonzero coefficient in the expression 7\ Y^j£ijaj- Note that up
to relabeling there are just three ways for the supports of 71 and 72 in T
to relate to one another. The two classes may have nested supports, disjoint
supports, or properly overlapping supports.

LEMMA 6.5. Any two distinct elements 71,72 G T can be realized by

disjoint simple closed curves in F.

Proof. There are three cases to consider, organized by the relative

placement of the supports. Without loss of generality we can assume that

card supp 71 > card supp 72. Then either

(1) supp 72 C supp 71 or

(2) supp 71 n supp 72 0 or

(3) supp 71 D supp 72 7^ 0 and supp7i n supp 72 7^ supp 72.

As in the proof of Lemma 6.3 we may assume that 71 -- X7L1 aj •
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In case (1) we may, by Lemma 6.4, assume that 72 has the form aj

for some £ < k. Then the two corresponding classes 7] Ylj=\Aj~ and

j2 j Ay+ can be realized disjointly in F as required, by Proposition 5.2.

In case (2) we may assume that 72 has the form Yl]=k+1 aJ ^or some ^ > k.

Then the two corresponding classes 71 — anc* 77 can

be realized disjointly in F as required.

In case (3) we may assume, again by Lemma 6.4, that 72 has the form

J2j=raJ for some r —
k and s > k. Then the two corresponding classes

71 ^2j= 1 Aj~ and 72 Yfj=r^j~ can realized disjointly in F as required.

PROPOSITION 6.6. Any three distinct elements 71, 72, 73 in T can be

realized by disjoint simple closed curves in F.

Proof. Once again we organize the analysis according to the relative

positions of the supports of the three homology classes. There are several

cases to consider. In each of several cases we shall normalize the expressions
for the 71 in terms of the c\j. The operations we will use are permutation
of the 7i, permutation of the ay, changing the sign of one or more 7/, and

changing the sign of one or more aj.
Suppose that the support of one class is contained in the support of another

class. Without loss of generality we may assume that

k i
71 ^ OLj and 72 ^ aj for some i < k

y=i j= 1

Now the signs of all coefficients of 73 involved in 7! may be assumed to be

negative, by Lemma 6.4. So we may assume that

V

73

j="

Then the three preferred lifts

k & V

71 LV ' ^7 23V ' and 73 53Af
7=1 7=1 j=U

can clearly be realized disjointly in F.Henceforthwe may assume that no one
of the three given homology classes has its support contained in the support
of one of the others.
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If the underlying support of one of the 3 classes, say of 73, is disjoint
from the supports of both of the other two, then this is easy. Realize 71

and 72 as above ; then realize the preferred lift 73 of 73, which has support
disjoint from those of 71 and 72.

Suppose now that two classes have disjoint support, but that no homology
class has support disjoint from the supports of both of the other two. Without
loss of generality we may assume that

k i
71 ai and 72= ^aJ

j=1 1

for some £ > k + 1. Now 73 involves some, but not all, of the support
of 71, some, but not all, of the support of 72, and, perhaps, some terms

not involved in either of 71 or 72. After permuting basis elements we have

73 =* eVai + X)/=£+i £3jOtj, where 2 < r < k - 1, k+l<s<£-l.
Now the Summand Condition implies that all Ey, r <j < k, have the same

sign ; and all £y% k+\ <j<s, have the same sign. By changing the global
sign of 73 if necessary we may assume that sy — 1 for r < j < k. Further,

by changing the sign of at, i > £ as needed we may assume that £y < 0

for i > £. Thus at this point we have arranged that

k s t

73 - ZA ± ai~ aJ

j=r j=k+1 j-l+1
where 2 < r < k — 1, kJr\<s<£ — 1, and £ + 1 < t < n, and the third
sum might not actually appear at all. If the " — " sign prevails in the formula
for 73, then the preferred lifts of 71, 72, and 73 are disjointly realizable in
F as required. On the other hand, if the " + " sign prevails we can reduce

to the previous case by first replacing a*+i,..., with their negatives, and

then replacing 72 with its negative.

Now we may suppose for the rest of the argument that no two classes

have disjoint support, and that no class has support contained in the support
of one of the other two classes.

For the penultimate case suppose that the intersection of all three supports
is empty. We divide the supports of the 7/ three pieces : Sy supp 7/ D supp 7/
and T[ — supp 7/ — supp 7;Usupp 7^, where {ij,k} — {1,2,3}. In what follows

we will, for notational simplicity, sometimes identify a7- with its index j. Then,
without loss of generality, after changing the signs of various ot[ as necessary,

we can assume that

71 ai + ^2^ ^2ai '

i£S\2 i£S i3 i£.T\
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Then, replacing 72 by its negative if necessary, and changing the sign of

at, iSS23 U Ti as necessary, and invoking the 2x2 Summand Condition,

we can assume that

72 - E a<' ~ Eat -
i(zS\2 iÇzSii iÇzTi

Ea-

Similarly, we can arrange that

73 - E ai±E a<+ E011
iES \ 3 1ES23 1ET3

Now the 3 x 3 Summand Condition tells us that the + sign must prevail

in the expansion of 73. For otherwise the matrix M would contain a 3 x 3

submatrix of the form
1 1 0

-1 0 -1
0 -1

which has determinant -2. Now with all these normalizations, the preferred
lifts of 71, 72, and 73 are disjointly realizable in F as required.

Finally, at last, we have the case that the intersection of all three supports
is nonempty but that no support set is contained in one of the other supports.
Let Si supp7/, Sij Si D S/, and S123 S\ D S2 H S3 7^ 0 Now as always
we can assume one of our homology classes, say 71 has all nonnegative
coefficients, i.e., 71 ^2jeSl aj- Next we can assume by the 2 by 2 Summand
Condition that 72 has positive coefficients on S12, and of course that it has

positive coefficients on S2 — S12. In particular, then, we have 72 J2jes2 aF
Since S123 7^ 0, all coefficients of elements of S3 H (Si U S2) must have the

same sign, which we may assume is positive. It follows that we may arrange
that 73 aj • IhN case preferred lifts of the 7z- will not be

disjointly realizable and we have to choose other lifts as follows. For 71 we
do use the preferred lift

71 -EL-
jES 1

For 72, however, we add on to the preferred lift canceling pairs corresponding
to elements of Si — S2 and define

^ E
jES2 jES\ — S2

and, finally, for 73 we define

73-EE+ E
jES_3 jES\ U1S2 — %
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These choices of lifts of the 7/ to homology classes in F satisfy the conditions
for disjoint realizability given in Section 5. (We emphasize again that the

conditions for realizability in planar surfaces continue to hold for homology
classes in nonplanar compact surfaces with boundary provided the homology
classes in question are all linear combinations of the classes of the boundary
curves.)

The one remaining aspect to consider in the proof of the sufficiency part
of the Theorem 3 is given by the following result.

PROPOSITION 6.7. If rank S < 4, then S can be realized by disjoint simple
closed curves in F.

Proof sketch. We will only outline the proof, which is a tedious case-

by-case check. In light of the preceding results, we may assume that F has

genus 4 and that S consists of together with 4 or 5 additional
classes 7/. We describe the system of 7/ by a matrix with 4 or 5 rows and

4 columns, consisting of entries 1, —1, or 0. (Conversely, any such matrix
determines a collection of homology classes which one can try to realize.)
We can normalize each such matrix according to the following principles :

First of all we can arrange that the rows have monotonically nonincreasing
size of support as one goes down the rows. Next, within any collection of
rows with supports of the same size we can assume that the rows appear
in lexicographical ordering according to the alphabet ordering +1, —1, 0.

Next, by changing signs of the elements of S as required we can assume
that the first nonzero element in each row and in each column is +1. A
computer can easily crank out a list of all such matrices in lexicographical
order. (It follows from the Summand Condition that there is at most one
element of length 4 (i.e., involving all 4 classes at). Similarly, there are at

most 2 elements of length 3. Again this follows from the Summand Condition,
since two elements of length 3 must have two support elements in common
and since the coefficients of the cq appearing in the overlap of the supports
of two classes must all have the same signs. The remaining classes must have

support size 2.) At this point one should check the Summand Condition by
checking that the determinant of every square submatrix is also +1, — 1,

or 0 and throw out those that do not meet this condition. Finally, in any

particular case there may be extra symmetries at hand, exchanging pairs of
rows or pairs of columns so as to produce a matrix higher up on our list.
This last step is done by hand. Ultimately in this way we produce a list of
36 such matrices which one must show are realizable by actually drawing



SYSTEMS OF CURVES 331

an appropriate planar diagram as above. (There is some redundancy in that

some of the 4 by 4 matrices appear as submatrices of 5 by 4 matrices later

in the list.) Although some of the required diagrams were a little difficult to

discover, in the end all 36 were shown to be realizable. As just one example,

here is one of the trickier realizable families :

(1 1 0 0 ^
1 0 1 0

1 0 0 1

0 1 -1 0

Vo 1 0 -1

This corresponds to the family

S {eu, <3^2, <^3, Q4, OL\ + <Y2, OL\ + #3, $1 + <^4,07 — <T3, OL2 ~ ^4}

The following classes on the 4 x 2-punctured sphere lift the five composite

classes :

A++A+ + A+ + A~,A+ +A+,A+ +A+,A+ +A3-,A2- +A+

This collection of classes can be realized by pairwise disjoint simple closed

curves on the punctured sphere, and this realization then descends to give a

realization of the given homology classes.

Discussion of the proof of Theorem 6, an algorithmic solution to the

realizability problem. The results of Section 5 on realizing curves on a

planar surface and of the first part of this Section 6, combine to provide
a finite algorithm for realizing any family of homology classes by pairwise
disjoint simple closed curves. As usual, let S C HfF) denote a finite set of
distinct homology classes satisfying the Intersection Condition, the Summand

Condition, and the Size Condition of the the Main Theorem, which we wish
to represent by pairwise disjoint simple closed curves. Suppose that the linear

span of S has rank n and extract from S n elements 04,, an that form a

basis for this span. Now each element 7; in the remaining part of S can be

expressed as a linear combination

7f XT««/
j

in which we know by Lemma 6.1 that the coefficients satisfy ff < 1.

Moreover, we may also assume that we have already represented elements

a\,..., ûk by disjoint simple closed curves A\, A„, by Proposition 4.2.
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We attempt to represent the remaining classes in T, the complement of

a\in S. Let F denote F cut open along the A/. Then F is a 2-

sphere with 2n holes (possibly with some additional handles attached, which

play no role in the present discussion and which can safely be ignored), with
orientable boundary consisting of one copy Af of each A/ and one copy
Ay of each A; with its orientation reversed. As in Section 5, the relevent

homology B C H\{F) is generated by the homology classes of the boundary
curves. Now the set S of homology classes can be realized by pairwise disjoint
simple closed curves in F if and only if the classes in T can be lifted to a

set T of homology classes in B C H\(F) that can be realized by pairwise
disjoint simple closed curves in F. Now, the classes 7; have infinitely many
pre-images in H\ (F), but only finitely many pre-images can be represented by
simple closed curves, since by Lemma 5.1 the coefficients of the classes of
the boundary curves must have absolute value at most 1, and all must have the

same sign. There are only finitely many such lifts of each homology class and

they may all be considered one-by-one for realizability using Proposition 5.3,

which is itself finitely verifiable.

7. Various instructive examples

Here we present three interesting examples that point to some of the

difficulties in finding necessary and sufficient conditions for realizability of
a system of homology classes by pairwise disjoint simple closed curves. To

start with we give an example showing that even when a system is realizable

it is possible to get stuck, in the sense that one might realize all but one class

and then have no way to realize the last class so as to be disjoint from the

other curves. In particular, one might have to go back and change the curves

already realized in order to complete the construction.

Example 7.1. Non-extendable partial realizations of a realizable family
of homology classes.

Let S — {ou, Oi2i D35 öl4, ol\ T 07, 07 T 07, ol 1 T 07 ~f~ ol3, 07 T ol-$ T ol4} be a

system of homology classes on a surface of genus 4, in which {c*i, 07, ol3, a4}
is part of a standard symplectic basis. One can check that this collection
satisfies all the necessary conditions in the Theorem 1. By Theorem 3, it is

realizable by a system of pairwise disjoint simple closed curves. Explicitly,
we can first realize {aj, a2, <23, 07} by standard curves Ai,A2,A3)A4 in the
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surface F of genus 4. Letting F denote the result of cutting F open along

the A|, we can then realize the remaining homology classes by lifting them

to Hi (F), as follows :

A+ + A+,A3" +A-.A+ + A+ +A+,A~ + A3" + A4

On the other hand the first three composite classes can also be realized

using the lifts
A+ +A+,A+ + A+,A~ + A~ +A3~

This realization cannot be extended to a realization of the full collection,

as one can see by case-by-case analysis. We remark that examples like this

show that a strategy of aiming for "maximum disjointness" as one realizes the

various curves will fail in general. One can similarly give simple examples

showing that a strategy of "maximal nestedness" will also fail. For example,
the lifts

A+ +A+,A+ +A~ +A+ + A^~ +A+ +A+,A+ +A+ + A+

again realize all but one class and this realization cannot be extended. In
particular, this example also shows that one cannot simply use what one

might call the "preferred" lifts of homology classes into F. That is, one

may actually require extra terms of the form Af + A~. (See the proof of
Proposition 6.6, for examples.)

Example 7.2. The Size Condition does not follow from the Intersection
and Summand Conditions.

Let S {cti, Cfc2j OL?>
1 Ö&L Qi\ + OL2)®-2 H~ ^35^1 + 2 + Q3,CKi + OL4,

ai + a2 + a4,ai + a2 + «3 + a4} be a system of 10 homology classes

on a surface of genus 4, in which {ai, a2, <23, a4} is part of a standard

symplectic basis, that is, is a basis for a summand of the homology on which
the intersection pairing vanishes. In particular, the Size Condition is not satisfied.

To check that this collection satisfies the Summand Condition holds we
consider the 6 by 4 matrix whose rows are given by the last 6 "composite"
classes expressed in terms of the first 4 classes :

/1 1 0 0\
0 110
1110
10 0 1

110 1

\1 1 1 1/
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By brute force we can show that every square submatrix has determinant
0, 1, or —1, which gives the Summand Condition. Alternatively one can
show directly that the transposed matrix describes 10 realizable homology
classes in a surface of genus 6.

Here is an important example that satisfies the Intersection, Summand, and

Size Conditions, but is not realizable.

THEOREM 7.3. Let F be a surface of genus 5 and let

{Of J, 0?5, ß\ j {

be a standard symplectic basis for H\(F). Then the set

S {0L\, Q5, C+ + Où2 T CX5, D1+Q2 + D3, OL2 + D3 + D4, D3+D4 —D5}

satisfies the Intersection, Summand and Size Conditions, but cannot be realized

by a corresponding collection of pairwise disjoint simple closed curves.

Proof Since the intersection pairing of F vanishes on the subgroup of
H\(F) generated by the a/, the Intersection Condition clearly holds. One

checks the Size Condition by observing that any set of 8 of the 9 classes

including {au, • • •, <^5} can easily by realized, by Proposition 6.7. This implies
the Size Condition for all subsets T of S not containing all 4 of the

composite classes. But if a subset T does contain all 4 composite classes,

then rank span T > 4 and card T < 9 < 3 rank span T — 3.

Here is the matrix of the composite classes expressed in terms of the first
5 independent classes.

/1 1 0 0 1 \
1110 0

0 1110
\0 0 11—1/

One can visually check that all 2 by 2 minors have determinant 0 or ± 1.

One can check by brute force that the same holds for the 4 by 4 and 3 by
3 minors. (A computer helps A better way is to check that all five 4 by
4 minors give realizable collections of homology classes. The best way is a

neat trick : just observe that the transposed matrix, corresponding to 4 + 5 9

classes on a surface of genus 4 is realizable by direct construction. This proves
that the Summand Condition holds.

Suppose that this collection can in fact be realized by pairwise disjoint
simple closed curves on F. If we cut open along the curve corresponding to
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<25 and cap off the resulting pair of boundary curves with two disks, then we

have a realization of the corresponding collection

S' {aif a2, <23, <24, <2i + <221 (2i + <22 + <^3,^2 + <23 + <24, <23 + «4}

contracted down onto a surface of genus 4. This collection is definitely
realizable. In particular we have a corresponding family of 4 pairwise disjoint
simple closed curves on the 2 x 4-punctured sphere. Homology considerations

show that the pair of disks, which must be removed, with the resulting
boundaries identified, to re-construct the original surface of genus 5, both lie
on the same side of the curves C3 realizing 72 <21 + <22 + <23 and C3

realizing y3 <22 + <23 + <24. But by bare hands one can show that for any
realization of 71 <21 + <22, 72, 73, and 74 a3 + <24 by pairwise disjoint
simple closed curves on the 2 x 4-punctured sphere, both of the curves C\
and C4 giving the classes 71 and 74 must be separated by both of the curves
C2 and C3. But because our particular realization comes from a hypothesized
realization of curves on a genus 5 surface, the added disks above must lie
on the same side of C2 as does Cj and also as does C4. This contradiction
shows that the given collection cannot be realized.

REMARK. The same set of 9 homology classes gives an example in any
surface of genus greater than 5 of homology classes satisfying the Intersection,
Summand, and Size Conditions that cannot be realized by a corresponding
family of pairwise disjoint simple closed curves.

This follows from Theorem 7.4 and Theorem 8.1 below.

8. Some Final Observations

Notice that the Intersection, Summand, and Size Conditions in Theorem 1

make no mention of the genus of the ambient surface. A natural thought is
that these three conditions might suffice to realize given homology classes by
pairwise disjoint simple closed curves provided one is allowed to "stabilize"
the surface by adding additional handles. Here we show that there is nothing
gained by such stabilization.

PROPOSITION 8.1. Suppose a surface F is expressed as a connected sum
and we identify H\(F) FlfFfjÇ&HifFf) in the obvious way. Suppose

further S C H\(F\) C HfF) is a family of homology classes that can be
realized by pairwise disjoint simple closed curves in F. Then S can be
realized by pairwise disjoint simple closed curves in Fx.
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Proof. Suppose F/ has genus gt, so that F has genus g g\ + gi- As
usual we let S {ai,..., 07,71,... 7t}, where a form a basis

for span S. In particular, n < g\ and oi,..., an form part of a symplectic
basis for the homology of F\ as well as for F. We let Ai,... ,An, Ci,..., Q
denote pairwise disjoint simple closed curves representing the corresponding
homology classes. We let F denote the result of cutting F open along

Ai,... ,An and F the result of filling in F with 2n disks. Then F is a closed

surface of genus g — n. We now view the curves Cj..... Q as living in F,
but missing the added disks. Note that these curves are all null-homologous
in F and hence each one of them separates F and F into two pieces. The

homology classes that the latter curves represent in the original surface F
and in F\ are determined up to sign by the collection of disks in F they
surround. It follows that the curves Cj,..., Ck all together separate F (or F)
into k + 1 pieces, with total genus g — n. In particular we see that there are

g — n homology classes an+i,..., ag represented by pairwise disjoint simple
closed curves An+\,... ,Ag in F disjoint from the original Ai,...,An and

Cj,..., Ck such that Oi,..., o^ is half of a symplectic basis for the homology
of F itself. It follows that if we surger away APl+i,*,., Ag, then a\%..., a9l
represents half of a symplectic basis for the homology of the resulting surface

F' of genus g\, and if we identify the curves Ai,...,A9l and Ci,..., Q
with their images in F1, we see that we have indeed embedded pairwise
disjoint simple closed curves in F' F\ representing the corresponding

homology classes. The point is that the homology classes 7; of the Q
are completely determined as linear combinations of the aj. And up to

homeomorphism the curves A\,... ,Agi are determined by representing a

basis for a summand of the homology on which the intersection pairing
vanishes.

The perspective developed above can also be applied to show that any

system of pairwise disjoint homologically distinct simple closed curves can

be expanded to a maximal set of 3g — 3 such curves.

PROPOSITION 8.2. Suppose that F is a closed, orientable surface of genus

g and that S is a family of pairwise distinct homology classes represented by

pairwise disjoint simple closed curves. Then S can be extended to a family
of 3g — 3 pairwise distinct homology classes represented by a set of pairwise
disjoint simple closed curves, including the given collection of simple closed

curves.
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Proof. As usual we let S — {a\,..., a/7,71,. • •, 7%} be a given set of

homology classes represented by a corresponding set of pairwise disjoint

simple closed curves, A\t. *, s An, C\,..., Q, where cui,..., an form a basis

for span S. We first argue that we can assume that n g. If not, then as

above some component of F cut open along all the given curves has positive

genus. In that component we can then find a simple closed curve representing

a homology class independent of those in S. In this way we increase the span

of S until its rank is the maximum possible, namely g.
Now, when we cut open along our expanded family of simple closed curves

all resulting components have genus 0. If all components have exactly three

boundary components, then the euler characteristic argument of Section 2

shows that our collection already contains 3g — 3 elements. Otherwise, some

component G is a planar surface with at least m > 4 boundary components.
Now when F is reconstructed starting from G one may think of attaching

components of F — G to G. None of these extra components can have just
one boundary curve, since such a curve would be null-homologous. If such an

extra component has two boundary curves, then the corresponding boundary
curves of G would not be distinct, so we should actually be thinking in this

case of simply identifying the two boundary curves. Suppose that some pair of
boundary curves of G is identified in this way. Then it follows that in F the

corresponding curve has a dual curve missing all the other curves representing
elements of S. In particular that boundary curve of G represents a homology
class in F independent of all the other classes in S. Now choose a simple
closed curve in G that surrounds one of these two boundary curves and one
other boundary curve. It follows that the corresponding homology class is
distinct from all other elements of S. In this way we have again expanded
the size of S.

Finally we may suppose no pair of boundary curves of G are to be
identified. We want to claim that some simple closed curve in G surrounding
3 boundary curves is homologically nontrivial in F and homologically distinct
from all other curves so far represented. A typical example of what we are
up against is the following : Think of the surface of genus g expressed as
the double of a (g + 1)-holed sphere, with one side further decomposed by
more pairwise disjoint, homologically distinct, simple closed curves. Now the
challenge is to find more simple closed curves in the second side distinct
from those already appearing in the first side. On the first side we have used
at most [3g — 3 — (g F l)]/2 g — 1 curves. But on the second side there
are, for example, (g-\-l)g/2 different homology classes represented by simple
closed curves surrounding just two boundary components.
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So suppose G has m > 3 boundary curves. Then H\{G) is free abelian of
rank m — 1, generated by the classes of the boundary curves, with the single
relation that the sum of the classes of the boundary curves is 0. Consideration
of the other components of F — G then implies additional relations of the

form "sum of boundary curves 0" over the elements in each piece of a

partition of the set of boundary components, where each partition piece has at

least 3 elements. In particular we can obtain a basis for the image of H\(G)
in H\(F) by selecting all but one boundary curve from each piece of the

partition.
Now in such a surface as G with its m boundary components there are

at most m — 3 pairwise disjoint simple closed curves, pairwise homologically
distinct and homologically distinct from the boundary curves. Even if G were
not a planar surface, there would be at most m — 3 such curves homologous
to some linear combination of the boundary curves. If the components of
F — G are Gi,..., Gr, where G, has m?- boundary curves, then Xw=i mi m-

Moreover, the image of H\(G) in H\(F) has a basis of XXml ~ ^) m — r
elements. Note also that 1 < r < m/3, since no component G; should
have just one or two boundary curves. Now in G/ there are at most ra; — 3

pairwise disjoint simple closed curves representing homology classes in the

linear span of the classes represented by the boundary curves of G/. It
follows that there are already in the originally given collection of curves at

most Y2(mi — 3) + m 2m — 3r distinct homology classes. On the other hand,

within G itself there are some 2m~r — m — I homology classes represented

by simple closed curves, excluding the classes represented by the boundary
curves and the 0 class. Therefore, in order to expand our originally given
collection of simple closed curves by adding a curve inside G, we need to
have

2m~r - m - 1 > 2m - 3r

or
2X — 2x — I >0

where x — m — r. But 2X — 3x — 1 <0 only for x 1 or x 2 (among

integral x). That is to say there is trouble only if m — r= 1 or m — r 2, i.e.,

r — m — \ or m — 2. But we already noted that we have 1 < r < m/3. So,

m — 2 < r < m/3, which implies that m < 3. But we had already seen that

we could assume m > 3. Thus there must be suitable simple closed curves in
G that can be added to the given collection while maintaining the required

homological distinctness.
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