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5.2 Proposition. Suppose x e SB(p is a singular braid of degree s.

Then ri(x) e ZBn is a linear combination of V elements of Bn (call

them terms). There is a unique term of maximal degree s + t and a

unique term of minimal degree s - t. More generally, for each integer

u, 0 ^ u < t, ri(x) has (^) terms of degree s + t - 2u, and each of
these terms has coefficient (-1)". D

There may be some cancellation among the terms of degree strictly
between s - t and s + t, but since there is only one term of maximum

and one term of minimal degree, they cannot be cancelled and we draw

the following conclusions.

5.3 Corollary. No element of SBn maps to zero under rj.

The kernel of r| is also trivial in another sense.

5.4 Corollary. If 1 e Bn C SBn denotes the identity braid, then

Ti - 1 (1) 1.

To close this section we consider the natural extension of r| to the monoid
ring ZSBn.

5.5 Proposition. The extension r| : ZSBn ZBn is not injective.

Proof, ti and Oi - are two elements of ZSBn with the same

image. For a more subtle example, consider the elements

x Ti^of1 + TiG2Ti, y t2o1~1t2 + G2TiT2

An easy calculation verifies that q(x) r|(y). However, x ^ y, as can
be seen by examining their images under the map tG/, o,-- g,-.

The above example is related to certain canonical relations obeyed by
the Vassiliev invariants — see [Bir2], p. 274, or [Bar].

6. Results regarding injectivity of p

Note that if xje SBn satisfy y\(x) r| (y), then they both have the same
number of singularities, i.e. x e SB ^ if and only if y e The relevance
of bands to the injectivity question will be illustrated by first checking
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injectivity of r| restricted to SB^]. (Of course, it is injective on SB^0) Bn,
because it is simply the inclusion of the basis of ZBn.)

6.1 Lemma. For a braid ß e Bn, the following are equivalent:

(a) i/ß 1= ßTy,

(b) xf ß ßuf for some positive integer m.

(c) ß has an (i,j)-band.

Proof. Clearly (a) => (b) and, using the homomorphism SBn Bn

defined by xk-+ ok, ok^ ok, we see that (b) implies of ß ßof, which
implies (c) by Theorem 2.2. Finally, (c) => (a), because the band can be

used to convey T/ on the left of ß to become ty on the right.

In Section 7 we will prove a generalisation of this lemma in which ß is allowed

to be a singular braid.

6.2 Theorem. If x,yeSB{nl) and rj(x) i\(y), then x y.

Proof We can write x aT/ß and y a% ß' for (nonsingular) braids

a, a', ß, ß' and compute:

ti(a) a ö/ß - a of1 ß

Tl(^) a'a,ß' - a'Gj-'ß'

Equating the terms of highest and lowest degree, we have:

ao/ß a'oyß' and aof !ß a'of
1

ßr

It follows that

ö^(ßß/-1) (ßß,-1)oy2

and, by the lemma,

t/(ßß'-O-Cßß'-1)^
öKßß'-1) (ßß'-^ö;

We quickly deduce that ßß'-1 aa'_1 and it follows that

a T/ß a'xyß'

We will now work towards the injectivity of r| on SB(„2). Define a

singular ribbon to be a map k:IxI->CxI such that R embeds I x t into
C x t, except for finitely many points t, for which the image is a single

point in C XL One also assumes, at these singular points, that there is a
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tangent plane in C x I for the singular ribbon. Singular ribbons are the best

one can do for ribbons for singular braids. As with braids, we say a singular

ribbon is proper for a singular braid if it sends {0, 1} x I along two of its

strands and the image is disjoint from the other strings of the singular braid.

An isotopy of a singular braid can be extended to an isotopy of any of its

proper singular ribbons, with the following caveat: under the equivalence

t/%j Tjt/ one may have to reparametrise the singular ribbon.

In contrast to the situation for ordinary braids, it is not always possible

to find a singular ribbon proper for a given singular braid x and with
a given arc A as its intersection with C x 0. For example, consider an
(z, i + l)-arc A, suppose ß is a braid such that {i, i + 1} * ß {y,y + 1} and
consider a singular braid x of the form x ßxy •••. Then a necessary
condition for the existence of a singular ribbon, whose intersection with C x 0

is A, would be A * ß [y, y + 1]. On the other hand, for the same reason
as for ribbons, we do have the following.

6.3 Proposition. If a singular ribbon R is proper for the singular
braid x and i?(I x 0) and R(I x 1) are isotopic as proper arcs
to [jj + 1] x 0 and [k, k + 1] x 1, respectively, then O/X xoy
in SBn.

Definition. We will extend our previous definition and say that a
singular braid has a (y, k)-band if it has a proper ribbon or singular ribbon
connecting [jj + 1] x 0 to [k,k+ 1] x 1. The crucial facts we've proved are
that a braid ß has a (y, k)-band if and only if oy ß ßo^, and for singular
braids, having a (y, A:)-band is a sufficient condition for satisfying such an
equation.

A singular ribbon NOT a singular ribbon
Figure 7

Singular ribbons only intersect two strands of a singular braid
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6.4 Lemma. Let a, ß be braids such that both ao,ß and aß
have (y, k)-bands. Then ax,ß also has a (y, k)-band.

Proof. Consideration of the induced permutation implies that the pair
{y',y + 1} * a is either {/, i + 1} (case 1) or disjoint from {i, i + 1} (case 2).

In either case, let A [y*,y + 1] * a. Then, since aß has a (y, /:)-band we have

[jj + 1] * (aß) [k, k + 1], and so A [k, k + 1] * ß ~1 ß *[k,k+ 1].

Similarly the hypothesis that ao/ß has a (y, k)-band implies that A * o/ A.
Now, in case 1, A is an (i, i + l)-arc and we must have A * c/ Ä.

Lemma 3.2 implies that A [/, i + 1]. We conclude that a has a (y, /)-band
and ß has an (/, £)-band, and these combine with the obvious singular

(/, /)-band for x, to provide a (y, /:)-band for ax/ß.
In case 2, Lemma 3.1 applies, and we may assume after an isotopy of

the (y, k) band for aß that its intersection, A, with Cx 1/2 is disjoint
from [/, / + 1]. This implies that we may insert x, between a and ß so that
the singular strands are disjoint from the band, and we conclude that ax/ß
has a nonsingular (y, A:)-band.

6.5 Theorem. The map r| is injective on SB^2).

Proof. Consider an equation of the form

r|(ax/ßxyY) T|(a'x/' ß'x^Y')

where a, a'y ß, ß', y, y'> e Bn •

Now

t|(at,ßxyY) ao/ßoyY - aa,"'ßcyY - aa.-ßo/'y + aaf'ßo/'y
and ri(a'xz-ß,xy-Y/) has a similar expansion. If they are equal in ZBn, then

considering the degrees we must have one of two sets of equations. Either

(1) ao/ßöyY a'ö/' ß'oyY'

(2) aar'ßoyY a'o^'ß'oyY'

(3) ao/ßo/'y a'o/'ß'o^'y'
(4) aof'ßo/'y a'a^'ß'o^'y'
or

(1)

(2')

(3')

(4)

ao,ßoyY a'o/'ß'oyY'

ao,"1 ßayY a'ocß'op'Y '

aa/ßcj1 y a'o,T1ß'ay-Y'

ao,~1 ßay"1 y a'cv'ß'o^V
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(5)

(6)

We claim that in either case the following are true:

aßy a'ß'y'

aT/ßiyY a'T/'ß'x^y'

Assume initially that (1), (2), (3) and (4) are satisfied. Eliminating ß'cvy'
between (1) and (2) gives a'-'aaj af,a'~1a. The main theorem now

implies that a'"'a has an (/", i)-band. Similarly eliminating a'o,'ß'
between (1) and (3) implies that yy'"1 has a (y,/)-band. Applying these

facts to (1) gives

and therefore (6) also holds in this case.

Now assume that the equations (1), (2'), (3') and (4) hold. A similar
elimination as in the first case implies that ßo7yy7_1 has an (/,y7)-band
and a'-1ao/ß has an (/',y)-band. So

Gi'ß'oj' a,_1ao/ßoyyy,_1 o/'a7-1ao/ßyy7-1

The above can be written as

(7) ao/ßy a'ß'oyy7

Similarly from equation (4) we have

(8) ao,"1 ßy a'ß'a^1 y'

Eliminating a_1a'ß' between (7) and (8) gives o-ßyy'-1 ßyy
so ßyy'-1 has an (/,y7)-band, and with Lemma 6.6 we deduce that ßx/yy7-1
has an (/,y7)-band. We can also conclude that equation (5) holds in this
case. A similar argument shows that a7-1 aß has an (/7,y)-band.

o/'ß'oy - a'^ao/ßo^yy7-1 <= ora' *aßyy7 lGy

and (5) follows in this case.

Similarly using (5)

t / ' ß7 ty ' i/'Œ7 _1aßyy7 _1T/ a'-^T/ßTy-yy7-1

Hence

a'~laTi$Tjyy'-1 a7 ~1 aßi^yy7 ~1

T//a7~1aßyy7-1Ti//

T/'ß'V
So (6) is true in this case as well.

(/,y7)-band

band
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