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ON THE GAUSS-BONNET FORMULA

FOR LOCALLY SYMMETRIC SPACES OF NONCOMPACT TYPE

Abstract. Let X be a Riemannian symmetric space of noncompact type and

rank > 2 and let T be a non-uniform, irreducible lattice in the group of isometries

of X. A Gauss-Bonnet formula for the locally symmetric quotient V T\X was first

proved by G. Harder. We present a new simple proof which is based on an exhaustion

of V by Riemannian polyhedra with uniformly bounded second fundamental forms.

The generalized Gauss-Bonnet theorem of C.B. Allendoerfer, A. Weil
and S.S. Chern asserts that the Euler characteristic of a closed Riemannian

manifold (M, g) is given by

where the Gauss-Bonnet-Chern form cog dvg is (locally) computable
from the metric g (see [AW], [C]).

In several articles J. Cheeger and M. Gromov investigated the Gauss-Bonnet

theorem for open complete Riemannian manifolds with bounded sectional

curvature and finite volume. They in particular showed that such manifolds
Mn admit an exhaustion by compact manifolds with smooth boundary, M",
such that Vol(dM") —» 0 (i —» oo) and for which the second fundamental forms

ll(dM'i) are uniformly bounded (see [CGI], [CG2], [CG3] and also [G] 4.5.C).
By a formula of Chern one has y(M") fM„ cjg + JdM>1 rwhere 77; is a certain
form on the boundary dM" (see [C]). The above two properties imply that

lim/^oo JdMnVi 0 and hence x(M") fM„ cug for sufficiently large f As a

consequence the Gauss-Bonnet theorem holds whenever x(M") — x(Mn) for
all sufficiently large i.

by Enrico Leuzinger

Introduction

1991 Mathematics Subject Classification: 22E40, 53C35,



202 E. LEUZINGER

We now consider a Riemannian symmetric space X of noncompact type and

rank > 2 and a non-uniform, torsion-free lattice F in the group of isometries

of X. The quotient F T\X is a locally symmetric space with bounded non-

positive sectional curvature and finite volume. Locally symmetric spaces thus

provide important examples for the above class considered by Cheeger and

Gromov. If T is irreducible a remarkable theorem of G. A. Margulis asserts that

r is arithmetic (see [Z], Ch. 6). For quotients of such lattices the Gauss-Bonnet

formula was first proved by G. Harder (see [H]). Following M. S. Raghunathan

[Rl] he explicitly constructed a smooth exhaustion function h on F which
has no critical points outside a compact set. A certain defect of the function

h, however, is the quite complicated geometry of its sublevel sets (their
second fundamental forms, for instance, are not uniformly bounded). As

a consequence the proof given in [H] involves rather long and technical
estimates.

The purpose of the present note is two-fold. On the one hand to give a

new, more geometric proof of the Gauss-Bonnet theorem for locally symmetric

spaces, which avoids the technically complicated estimates of [H]. And, on
the other hand, to provide an explicit (and independent) illustration of general

results in [CG3].

Our approach is based on an exhaustion F • Qy>o l°caUy
symmetric spaces not by smooth submanifolds but by polyhedra, i.e. compact
submanifolds with corners (see [L2]). The corners which appear here are

naturally related to the geometry of F at infinity (and therefore should not
be smoothed). Moreover, for each s > 0 the polyhedron F(y) is a strong
deformation retract of F (see [L3]). The essential new feature of this exhaustion

is that the boundaries of dV(s) consist of subpolyhedra of V(s) which are

projections of pieces of horospheres in X. As a consequence their second

fundamental forms are uniformly bounded. This property together with the

generalized Gauss-Bonnet formula for Riemannian polyhedra of Allendoerfer-

Weil and Chern leads to a considerably simplified new proof of the Gauss-

Bonnet theorem for locally symmetric spaces (see Theorem 4.1).

Notation. Explicit constants are irrelevant for our purpose. If / and g

are positive real valued functions on a set S we thus simply write f < g if
there is a constant c > 0 such that f(s) < cg{s) for all s E S.
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1. The formula of Allendoerfer and Weil

A C°° (resp. Cu manifold with corners is a topological Hausdorff space

locally modeled upon a product of lines and half-lines and such that coordinate

changes are of class C°° (resp. Cw). For precise definitions and basic

information about this concept we refer to [DH]. A Riemannian polyhedron
is a compact manifold with corners equipped with a Riemannian metric.

Let Vn be an n -dimensional Riemannian polyhedron with boundary

consisting of a finite family of lower dimensional subpolyhedra

Vnfk (0 < k < n - 1)

and with Riemannian metric induced from Vn. The outer angle 0(p) at a

point p of VE~k is defined as the set of all unit tangent vectors v G TpVn
such that (v,w)p < 0 for all w in the tangent cone of Vn at p. Note that

0(p) is a spherical cell bounded by "great spheres" in the (k— 1)-dimensional
unit sphere of the normal space of VE~k C V11 at p. In [AW] Allendoerfer
and Weil define a certain real valued function Hfi/x on the outer angles of
VE~k. The explicit form of this function will not be needed in this paper. We

shall only use the fact that ^ is locally computable from the components
of the metric and the curvature tensor of Vn and from the components of the

second fundamental forms IIz(p),Z G 0(p), of VE~k in Vn. Let W denote
the Gauss-Bonnet-Chern form on Vn and dvE (resp. dwk-i) the volume
element of V% (resp. of the standard unit sphere Sk~~l). The inner Euler
characteristic x' of Vn is by definition the Euler characteristic of the open
complex consisting of all inner cells in an arbitrary simplicial subdivision
ofVn.

We can now state the generalized Gauss-Bonnet formula of Allendoerfer-
Weil for Riemannian polyhedra (see [AW]).

PROPOSITION 1.1. Let Vn he a Riemannian polyhedron with boundary
consisting of a finite family of subpolyhedra VnE~k. Then the inner Euler
characteristic of Vn is given by

Jv" k=1 E
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2. An exhaustion of locally symmetric spaces

Let X be a Riemannian symmetric space of noncompact type and rank > 2

and let T be a non-uniform, torsion-free lattice in the group of isometries
of X. In this section we briefly describe the basic features of an exhaustion

of the locally symmetric space V F\X by Riemannian polyhedra, which
was previously constructed in [L2].

The idea is to work with a fundamental set Q. C X for the discrete

(arithmetic) group T. Such "coarse" fundamental domains are provided by
reduction theory ; they are finite unions of translates of so-called Siegel sets.

We begin with reviewing some facts about linear algebraic groups and set

up the notation. Roughly speaking, the lattice F determines a "Q-structure"
on the real Lie group of isometries of X such that F is given by integer
matrices. The symmetric space X in turn inherits canonical parametrizations
adopted to this structure (generalized horocyclic coordinates). Siegel sets are

then defined with respect to such parametrizations.

2.1. Reduction theory and geometry at infinity

We denote by G the identity component of the group of isometries of X ;

it is a connected, semisimple Lie group with trivial center. We shall always

assume in the following that the non-uniform lattice F is irreducible (see [R2]
5.20). Then, by the arithmeticity theorem of Margulis, there is a connected

semisimple linear algebraic group G defined over Q, Q -embedded in a general
linear group GL(iV, C), and a Lie group isomorphism p : G —> G(M)° such

that /?(T) is arithmetic, i.e. /?(F) C G(O) C GL(7V, C) is commensurable with
the group G(Z) G D GL(N, Z) (see [Z] 3.1.6 and 6.1.10). The symmetric

space X can be recovered as the manifold of maximal compact subgroups

of the identity component of the group G(M) GnGL(Af,M) of M-rational

points of G. For simplicity we will always identify G with G(M)° and F
with p(F).

Let S (resp. T) be a maximal Q-split (resp. M-split) algebraic torus

of G, i.e. a subgroup of G which is isomorphic over Q (resp. M) to

the direct product of q (resp. r > q) copies of C*. All such tori are

conjugate under G(Q) G fl GL(A, O) (resp. G(M)) and their common
dimension q (resp. r) is called the Q-rank (resp. M.-rank) of G. The identity
component of S(M) (resp. T(M)) will be denoted by A (resp. A0), the

corresponding Lie algebras by a (resp. do). The M-rank of G coincides with
the rank of the symmetric space X, i.e. the maximal dimension of totally
geodesic flat subspaces. The choice of a maximal compact subgroup K of G
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is equivalent to the choice of a base point xo of X. We can choose K

with Lie algebra t so that under the corresponding Cartan decomposition

g © p of the Lie algebra § of G we have a Ç ao C p TX

Here ao is maximal abelian in p, i.e. the tangent space at xo of the

(maximal M-) flat Ao • xo in X. The pair of Lie algebras (g, ao) gives

rise to the root system iO of the symmetric space. Similarly there is a

system of Q-roots qO associated to the pair (g, a) (see [B3] §21). It is

always possible to choose orderings of qO and such that the restrictions

of simple M-roots of to a are either simple Q-roots of qO, i.e. the

elements of a basis À qA of qO, or zero (see [BT] 6.8). The basis

defines a closed M-Weyl chamber in ao and À then determines a

closed Q-Weyl chamber a+ : {H G a | a(H) > 0, for all a G A} in a.

We set A+ expa+ (resp. Aq expa^). A Q-Weyl chamber in A is a

translate of the basic chamber A+ • xo Ç AJ" • xo. The elements of A are

differentials of characters (defined over Q) of the maximal Q-split torus S.

It is convenient to identify the elements of A also with such characters. When

restricted to A their values are denoted by a{a) (a G A, a G A). Notice that

A+ {a G A I a(a) > 1 for all a G A}.
A closed subgroup P of G defined over Q is a parabolic fjhsubgroup

if G/P is a projective variety (see [B3] §11). A parabolic Q-subgroup P of
G G(M)° is by definition the intersection of G with a parabolic Q-subgroup
of G (see [BS]). The conjugacy classes under G(Q) of parabolic Q-subgroups
are in one-to-one correspondence with the subsets 0 of the (chosen) set A

of simple Q-roots; they are represented by the standard parabolic Q-subgroups

P© of G (see [B3] §21.11). The corresponding standard parabolic
Q-subgroups of G are denoted by PQ. The minimal parabolic subgroup
P P0 has a decomposition P UMA, where U is unipotent and M
is reductive; A centralizes M and normalizes U (see [Bl]). This yields a

(generalized) Iwasawa decomposition for G, i.e. G P - K UMAK, which
implies that P acts transitively on the symmetric space X. The intersection
of the maximal compact subgroup K of G with M is maximal compact
in M and the quotient Z M/(K H M) is (in general) the Riemannian
product of a symmetric space of noncompact type by a (flat) Euclidean space.
Let t : M —» Z be the natural projection. Then the "horocyclic coordinate
map"

p:Y=UxZxA I—> X ; [ip r(m), a) \—» uma • xo

is an isomorphism of analytic manifolds (see [BS] or [B2]).



206 E. LEUZINGER

A generalized Siegel set S — SWîT in X (relative to the Q-Weyl chamber

A+ -xo) is a subset of X of the form ujAt • xq where uj is relatively
compact in UM and, for r > 0, Ar {a G A | a(a) > r a G A}. If
we define a0 G A by a(a0) r for all a G A, then Ar A\a$ A+<20

and C Ar • x0 C S is a (translate of a) Q-Weyl chamber in X. Siegel
sets provide the building blocks for (approximate) fundamental domains for
arithmetic groups. A subset LI C A is called & fundamental set for an arithmetic

group r if the following two conditions hold

(i) X FL1;
(ii) for every q G G(Q) the set {7 G T \ qLl D 7^ 0} is finite.

The existence of fundamental sets is guaranteed by reduction theory for
arithmetic groups (see [Bl] §13 and §15).

PROPOSITION 2.1 (Borel, Harish-Chandra). Let G be a semisimple
algebraic group defined over Q with associated Riemannian symmetric space
X G/K. Let F be a minimal parabolic O-subgroup of G and let F be

an arithmetic subgroup of G(Q). Then there exists a generalized Siegel set

S (with respect to A+ -xq such that, for a (fixed) set {qt | 1 < i < m}
of representatives of the finite set of double cosets r\G(0)/P(0), the union
Q Uti Qi ' S Is a fundamental set (of finite volume) for F in X.

It will be useful in the sequel to dispose of geometric interpretations of
the above algebraic concepts and assertions.

First recall that the symmetric space A, as a Riemannian manifold of
nonpositive curvature, has an ideal boundary at infinity d^X. The latter
is defined as the set of equivalence classes of asymptotic geodesic rays
(see [BGS]). In the same way one also defines the ideal boundary at infinity
dooV of F F\X. If r is an arithmetic lattice in a group G of O-rank

q 1, the boundary SocV of the associated locally symmetric space consists

of m points (corresponding to the cusps), where m is as in Proposition 2.1.

For Q-rank q > 2 it turns out that d^V is isomorphic to a finite simplicial
complex r\|T|, a geometric realization of the Tits building of G modulo F
(see [JM] and [LI]). We recall the construction of the latter.

Let V be the set of all parabolic O-subgroups of G. The conjugacy classes

of elements of V are in one-to-one correspondence with the subsets 0 of the

set A of simple Q-roots. Every conjugacy class has a standard representative
denoted by Pq. One can show that the sets of double cosets r\G(Q)/P©(Q)
are finite for all 0 (see [Bl], §15.6). Let A [eu..., eq\ C denote a
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standard geometric q— 1 simplex (q — Q-rank of G). If A — {(i\,... and

A — 0 {ah,... aJ with 1 < h < < Ù < q, we define the boundary

simplex A(0) of A as A(0) := \eh,... ,e/J. Let P be a minimal parabolic

Q-subgroup of G and let the set T\G(Q)/P(Q) be represented by {qu • • • qm}

(see Proposition 2.1). We take m copies A7 [e\.... e^q] of A with faces

A7(0) corresponding to 0. The corresponding homeomorphisms A ~ A7 are

denoted by pj. The simplicial complex r\|T|, which provides a geometric

realization of the quotient of the Tits building of G modulo F, is constructed

from the simplices A1,... Am through the following incidence relations:

Two simplices A7 and A1 are pasted together along the faces A7(0) and

A;(0) by the homeomorphism pjoipf1 |a'(ö) if and only if

r^P0(Q) TqjP0(Q).

We remark that the points of T\|T| are in one-to-one correspondence with

equivalence classes of geodesic rays in the locally symmetric space V T\X
(see [Hat], [LI] and [JM]).

2.2. An exhaustion by polyhedra

We index the "edges" of the Weyl chamber a+ (or equivalently of A+ -v0)

by simple Q-roots. More precisely, the edges of A+ -xo are given by geodesic

rays ca(t) exp(tHa) • xo where Ha G a+, ||#a|| — 1 and ß(Ha) — 0

for ß / a (a,/3 G À). We further write c^a for the edges qkaoca of
the chambers q^C in the fundamental set £2 (see Section 2.1 for the notation).

If a geodesic ray c represents a point z G d^X we write z c(oo). The

group G act naturally on dooX through g-c{oo) (g-c)(oo). For every a G À
the isotropy group of ca(oo) under that action coincides with the (maximal)
parabolic subgroups PA_{ay introduced above (see [L2] Lemma 1.2).

To a geodesic ray c: [0, oo) —> X (parametrized by arc-length) which

represents a point z in the ideal boundary d^X of X is associated a Busemann

function on X at z given by

h- \ X —-> M ; hfx) lim [d(x, c(/)) — t]

The level sets of a Busemann function are horospheres, which foliate the

symmetric space. We denote the Busemann functions which correspond to the

rays cka by hkOL. Note that hka(cka{t)) tends to -oo if the arc-length t of
the geodesic cka tends to Too.

In contrast to an exact fundamental domain there are not only points on the
boundary of a fundamental set Q but possibly also interior points which are
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identified under the action of F. However, there is only a finite set of isometries

7 G r with 7^ n O / 0. Furthermore it suffices to look at the (finite)
set V of those 7 for which this intersection is not relatively compact in
X (all other intersections are contained in some compact subset of Q). It
turns out that every 7 G V has the crucial property that there are indices

ij such that qflyqi is parabolic i.e. fixes at least one point in the ideal

boundary d^X (see [L2] Proposition 2.2). Then for every 7 G V there are

indices ij,a such the family of horospheres of the form hj^(s)^s G M, is

mapped isometrically to the family hj~^(s),s G M (see [L2] Lemma 3.2).
These identifications correspond to the incidence relations described above in
the construction of the simplicial complex T\|T|. (To see this one has to

use the fact that the Siegel set at infinity <9oo (qjS) is canonically isomorphic
to A7 [e\,... eJq\.) The main technical step is then to renormalize the

Busemann functions as hia hia—Sij (for certain constants sy in such a way
that each 7 G V maps a horosphere of some given level, say {h,a j}, to
another one, {hja s}, of the same level 5 (see [L2] Lemma 3.4). This fact

finally allows us to truncate the constituents qLS of the fundamental set Q by
removing the open horoballs Bja(s) := {hi0i < — ras} (for certain constants

ra and for s > 0 sufficiently large). The above construction guarantees
that the truncated fundamental set £l(s) := |J=l qtS(s) of Q is relatively
compact in X and invariant under the (restricted) action of F. Moreover
for s sufficiently large the F-invariant "core" X(s) := F • Q(s) can be written
as the complement in X of a union of (countably many) open horoballs :

X(s) X — F • (Xj UaeA ^'a(A (see [L3] Theorem 3.6). These horoballs are

disjoint if and only if F is an arithmetic subgroup of a Q-rank 1 group. The

projection 7r : X —» V maps X(s) to a compact submanifold with corners

V(s) of V whose fundamental group is isomorphic to F. The "centers" of the

projected horoballs in d^V are in bijection with the vertices of r\|T(. The

exhaustion function h is eventually defined in such a way that its level sets

coincide with the boundaries ôVCs). We summarize the result in the following
proposition (see [L2] Theorem 4.2).

PROPOSITION 2.2. Let X be a Riemannian symmetric space of noncompact

type and W-rank > 2 and let F be an irreducible, torsion-free,
nonuniform lattice in the group of isometries of X. On the locally symmetric

space V F\X there exists a piecewise real analytic exhaustion function
h : V —> [0, 00) such that, for each s > 0, the sublevel set y(s) := {h < s}
is a Riemannian polyhedron in V. Moreover the level sets {h a-} dV(s)
consist of projections of pieces of horospheres in X.
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Each polyhedron V(s) is homotopically equivalent to V. More precisely

we have

PROPOSITION 2.3. For every sufficiently large s the locally symmetric

space V is homeomorphic to the interior of the polyhedron V(s) in V, and

U(s) is a strong deformation retract of V.

For the proof see [L3], Theorems 5.2 and 5.5.

3. Estimates for the boundary subpolyhedra

We wish to apply Proposition 1.1 to the polyhedra V(s) in the above

exhaustion and then take the limit for s —» oo. To that end we need estimates

for the second fundamental forms and the volumes of the (lower dimensional)

boundary polyhedra.
For each Siegel set St := qtS which is part of the fundamental set Q we

have its truncated part

Si(s) := «S,- - (J n
a£A

The top dimensional boundary faces of S,(s) in <S/ (resp. of Q(s) in Q)
are subsets of horospheres :

tiia(s) '= {r~lhia -s} n A

The "horospherical" pieces Hja(s) together with their F-translates form the

boundary of the manifold with corners X(s) in X. For any nonempty subset 0
of À we set

n KiaC) C Si{s)
aG0

The various boundary subpolyhedra of V(s) are then unions of projections of
the pieces Hiq(s) under the canonical projection 7r : X — V. More precisely,
as explained in Section 2, for any subset 0 C A, we have the equivalence
relation on the set I {1,... m}

j I if and only if TqjPQ TqiPe

(the qx are as in Proposition 2.1). This relation induces a

partition, 7(0), of the set I whose components will be denoted by E. Let
n — dim A dimF, let k be the cardinality of 0 and let E G 7(0).
Then VnE k(s) := tt(|J/gi^eW) is a (n — k)-dimensional boundary
polyhedron of V(s) ; and moreover, any boundary polyhedron arises in this way
(see [L3] §4).



210 E. LEUZINGER

REMARK. The minimal possible dimension which occurs is n — q where

q is the Q -rank of G. It is also interesting to note (though not needed below)
that the outer angles are isomorphic to Q-Weyl chambers and their walls at

infinity.
We shall use the following well-known fact about Jacobi fields in symmetric

spaces (see [K] Theorem 2.2.9). A Jacobi field along a geodesic ray is called
stable if its length is bounded.

LEMMA 3.1. Let r : [0,oo) —t X be a unit-speed geodesic ray in the

symmetric space X (of noncompact type). Set p r(0). Then the unique
stable Jacobi field Ju(s) along r(s) with Ju(0) TpX can be written as

Ju(s)e~XjSajEj(s)

J

where (£)(L)} is an orthonormal frame of parallel fields along r, the Xj are

non-negative (uniform) constants and u ^2jajEj(0).

LEMMA 3.2. Let s > 0. The second fundamental forms of every boundary
polyhedron VE~k(s) with respect to outer angles in L(^) are uniformly bounded

by a constant independent of E,k and s.

Proof Since the claim is local we can work in the universal covering

space X. As we noted above the preimage of VE~k(s) in X under the projection

7T is the union of a finite number of horospherical sets

^,©0) P| Hia(s) C P -s}
aG0 aG0

where 0 is a subset of À with k elements. The (inner) unit normal field of
the horosphere {r~lhia —s} is given by Zia := —grad hia (see e.g. [HI]
Proposition 3.1). Using dir any element in the outer angle Ofin:(p)) of VE~k(s)

at a point ix(p) G VE~~k(s) can then be identified with a positive linear
combination (of norm 1) of the radial fields Zia(p), a G 0. It therefore

suffices to show that for any pair (if a) the second fundamental form of
Vnfk(s) relative to dirZia is uniformly bounded. We fix i and a and write Z
for Zia. For p G X let

% .)p denote the Riemannian metric of X at p.
Let u, v G TpX be such that dn(u),d7i(y) G T^p)VE~k(s). Using the above

identifications the second fundamental form of VE~k(s) C U(^) with respect
to Z can be written as

IIz(*A v) (p) (.DUZ, v)p
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According to [HI], Proposition 3.1, we have DuZ(p) J'u{0) where Ju

is the stable Jacobi field along the (unique) geodesic ray, say r, in I
which joins p to c/a(oo) G d^X and with initial value Ju{0) u.

By Lemma 3.1 there are orthonormal parallel fields Efs) along r and

constants Xj > 0 such that Ju(s) Jfj e~~XjSajEj(s) with u

Consequently we get J[f0) ^jajEj(0) and finally, for v J2jbjEj(0),
\Ilz(u,v)(p)\ |-£\Xjdjbjl IMIN|.

We next estimate the volumes of the boundary polyhedra. Recall from
Section 2.1 the parametrization of X by horocyclic coordinates

p: Y U x Z x A I—> X ; (m,r(m),a) i—> uma • vo

Let dx2 be the G-invariant Riemannian metric on X induced by the Cartan-

Killing form of the Lie algebra g of G and let dz2 be the invariant metric
on Z. Further let da2 (resp. du2) be the left-invariant metric on A (resp. U).
Finally set dy2 := p*dx2.

LEMMA 3.3. Eet dvy, dvu, dvz and dv& denote the volume elements of
the metrics dy2, du2, dz2 and da2. Then at the point (u,z,a) G Y we have

Tdvy p(a)~ldvu A dvy A dvA

where e ^ dim U and p is the sum of all positive roots (counted with
multiplicity); it can be written in the form p — J2azACaa> Ca A 0.

For the proof see [B2] Corollary 4.4.

Lemma 3.4. For the (n - k)-dimensional volume of each boundary
polyhedron Vg k(s) of V(s) one has the estimate

Vol (V£-*Cs)) A sq-ke~cs

where q dim A is the Q-rank of G and c > 0 is a constant (independent
of E, k and s

Proof We again consider the preimage of V^~k(s) in X under the map tt
We need to estimate the volume of each horospherical piece

W;eO) P| {Tphia -s} n
ue@

It clearly suffices to carry out the estimates for ; note that qx
For the horocyclic coordinate map ß :Yandthe canonical projection
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tca : Y —> A we set A©(.y) := -KAogi~x (TL\q{s)) C A. The set Aq(s) is contained

in an "affine" subspace of A of the form a\a*{s)Aq~k where a\a*(s) G A and

Aq~k is a q — k-dimensional subgroup of A (see Sections 3 and 4 of [L2]).
We denote the restriction of dvA to Aq~k by dvAq-k ; for k q we have
A0 e and we set dvAo 1. By Lemma 3.3 we have (for k equal to the

number of elements of 0)

Vo\[V^~k(s)) A / p(a)~l dv\j A A dvAq-k

Since the horospherical piece Wi©(s) is part of a Siegel set cSW)T with cj

relatively compact (and hence of finite volume) in UM we get

/ p(a)~xdvu A A dvAq-k A
Jfi-Wieis))

-A / dvyUdvz / p(a)~xdvAq-k A / p(a)~ldvAq-k.
J 00 JAq(S) JAq(S)

Also by definition of a Siegel set we have a(û) > r A 1 for all a G A.
Moreover, the computations in the proof of Lemma 4.1 (and Lemma 3.5) in
[L2] show that for all a G 0 one has a(a\a*(s)) A with pa > 0.

Hence, as 0 C A is not empty and since p caa(ca > 0), there is a

uniform constant c > 0 such that p(a)~l A for all a G A©(s). As noted

above the set A ©(s) is contained in a (q — k) -dimensional affine cone in A.
It is similar (in the sense of Euclidean geometry) to A©(0) with similarity
factor s (see the proof of Lemma 4.1 in [L2]). Hence we eventually get

Iaq(s) dvA«-k ^ sq~k an<^ ^e Lemma follows.

4. A NEW PROOF OF THE GAUSS-BONNET FORMULA

In this section we present a new simplified proof of the Gauss-Bonnet

theorem for higher rank locally symmetric spaces.

THEOREM 4.1. Let X be a Riemannian symmetric space of noncompact

type and M-rank > 2 and let T be an irreducible, torsion-free (non-uniform)
lattice in the group of isometries of X. Then for the locally symmetric space
V T\X the Gauss-Bonnet formula holds :

X(V)= f ¥dv
Jv
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Proof. By Proposition 2.2 there is an exhaustion V LUo ^ of y
by Riemannian polyhedra V(s). Each polyhedron V(s) in this exhaustion is

equipped with the Riemannian metric induced by the one of V. Proposition 1.1

applied to V(s) yields

(-l)Y {V(s))~ <¥dv
JV{s)

A > y / / \\^E,k\\ duk-l dvE(p)
n~k(s) J0(p)

k= 1 E e

where q dim A is the Q-rank of G (see Section 2.1) and where the index E

runs through a finite set. As we remarked in Section 1 the function is

locally computable from the components of the metric and the curvature tensor

of 1/(5) and from the components of the second fundamental form of VE k(s)

in V(s). The fact that V is locally symmetric together with Lemma 3.2 thus

implies that W^etW 1 f°r all E,k. Using Lemma 3.4 we conclude that

q

(-l)V(V(s)) - f MV*. £Vol(V|-l(s)) -<
Jv(s) uE

^s
k.E k= 1

By Proposition 2.3 we have x'^W) xOO- The polyhedra V(s) exhaust V

and x(Y) is an integer; hence (-l)ÄxOO Iv^ dv for sufficiently large s.

Finally, for n odd ¥ 0 by definition (see [AW]) and the claimed formula

follows.
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