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3. Uniformly exponential growth
AND GROWTH OF GRADED ALGEBRAS

In this section we describe a method of estimating growth functions of a

group in terms of its graded Lie, and associative algebras defined via dimension

subgroups. We begin by recalling some concepts and notations.

As in [Gri] considerations were given with respect to a Galois field GFP,
here we modify the arguments for a field of characteristic 0, namely Q.

Let G be a group; denote by Q[G] the group algebra of G over Q,
and by À c Q[G] the augmentation ideal, that is the ideal generated by the
elements of the form g — 1, with g G G. Recall that the lower central series

of G is the sequence of subgroups {yn(G)}^1 of G defined by 71(G) — G

and, for n > 2, 7/7(G) - [G. 7,7_i(G)J

The subgroup

Gn {geG:g- 1 e A*}

is called the n-th dimension subgroup of G over Q and it has the following
characterisation due to Jennings [J] (see also [P: IV, Thm. 1.5] or [Pm: 11,

Thm. 1.10])

Gny/yM {g e G :3keN,/g7„(G)}

For any group G one defines as usual an associative graded algebra A(G)
and two graded Lie algebras L(G) and C(G) by

oo

A(G) ® A"/A"+1
n— 1

oo

L(G) ® [(Gn/Gn+\)Q]
H= 1

OO

C{G) © [(7„(G)/7a+1(G)) ®z Q]
n— 1

(see for instance [P], [Pm]). Quillen's Theorem [Q] states that *4(G) is the

universal enveloping algebra of L(G).
Assume now that G is finitely generated and set

an(G)dim(A"/A"+1)

bn(G) rank(G„/G„+i)

cn(G) rank(7„(G)/7„+i(G))
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where, by rank, we mean the torsion free rank of the corresponding abelian

group. Then the following relations hold

CC OC OC

J2an(G)z"JJ(1 - z")"WG) Jpl -
n-0 /?—1 /i=l

The first equality follows easily from Quillen's Theorem [Pm: Thm. 4.10,

Chapter 3] and the second one follows from the equality bn(G) cn(G) as

proved in [Be].
In [Be] it is also proved that

lim sup yC^" lim sup yT^.
n—>oc n—^oc

3.1. LEMMA. For any finite system of generators A of a group G the

following inequality holds :

cin(G)<"a(0-.n>1.

Proof. For x. y £ G we have

X)' - 1 (x - 1) + 0' - 1) + (x - 1)0' - 1)

x"1 - 1 -<x - 1) - (x - lXx"1 - 1)

so that

xy - 1 (x - 1) + (y - 1) mod A2

x-1 — 1 —(x — 1) mod A2.

The ideal A" is spanned, over Q, by the elements of the form

3'i(xi - l)v2(x2 - 1)- • - >'n(x„ - l)y„+l

where x,eG and » G Q[G], 1 < ; < n,1 < < Since

y ygkgg ygkg mod A, kg G Q
seG geG

a basis for the quotient space A"/A"+1 can be chosen among the images
modulo A"+l of the elements of the form

(a,-, - 1 )(«,•. - 1) • • • - 1),

where a,. G A. But (a,, - 1 ){ah-I.)•••(„,„ - 1) where the
summation extends over elements g of length at most n with respect to the
system of generators A. Q
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3.2. COROLLARY. Let G be a finitely generated group and suppose
that the ranks of y„(G)/y„+i(G) grow exponentially. Then G has uniformly
exponential growth and the estimate

A*(G) > lim sup yrank(7„ (G)/7„+1 (G))
n >00

holds.

Recall that a group G is parafree of para-rank m if it is residually
nilpotent and the factors of consecutive groups in its lower central series

equal the corresponding ones of a free group of rank m. There are parafree

groups which are not isomorphic to free groups [B 2,3].

3.3. PROPOSITION. A finitely generated parafree group G of para-rank
m >2 has uniformly exponential growth and

A*(G) > m

Proof. It is known (see for instance [MKS : Thms. 5.11 (Witt's Formulae)
and 5.12]) that for a free group Fm the rank of (7,2 (Fm)/~fn+ \(Fm)) equals the

n-th coefficient of the Maclaurin power series of the function U(z) 1/(1 —mz)

and the previous corollary can be applied.

Given a parafree group G of para-rank m > 2 it would be interesting to

compare A*(G) with A*(Fm) 2m — 1.

3.4. PROBLEM. Is it true that, for a finitely generated para-free group
G of para-rank m> 2 which is not free, one has A*(G) > 2m — 1

In order to formulate the next statement we recall the following

3.5. DEFINITION. An element R e F is said to be primitive with respect

to the lower central series if, for all n > 2, it is not an n-th power
modulo 7o;(r)+i(F) where u{R) is the weight of R. (The latter is defined by
R e 7u(R)(F) but R 7u>(£)+i(F)-)
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3.6. THEOREM ([L 1,2]). Let R be an element of the free group F of

finite rank m which is primitive with respect to the lower central series.

Denote by k — uj(R) its weight and by {R) the normal closure of R in F.

Let G F/(R) and let C{F) and C{G) be the corresponding Lie algebras.

Let then r be the image of R in Ck(F), the k-th component of C{F) and

denote by I the ideal of C(F) generated by r.

Then I is the kernel of the canonical homomorphism of C{F) onto C(G),

i.e.

C{G) £(F)/I.

Moreover for all n> 1 the abelian group Cn{G) is a torsion free group
whose rank is the n-th coefficient of the Maclaurin power series of the

function

4. More on uniformly exponential growth
OF ONE-RELATOR GROUPS

Any two-generated one-relator group G can be presented in the form
G (a.b : akw(a,b) l) where k G Z and w(a.b) belongs to the

commutator subgroup [F. F\ of the free group F F{a.b) freely generated

by a and b (this follows from Lemma 1.1). Since a and b constitute a basis

in F/y2(F) and [a. b] generates 72CH/73(F), one can also present G in the

form

Gr= (a. b : ak[a. b]lw{a. b) 1

where k.lE Z and w{a.b) G 73(F).
In this section we shall see that, under suitable assumptions on k.l and

w(a.b), the corresponding group has uniformly exponential growth.
As an application of Labute's Theorem we get the following :

4.1. Proposition. Let G (a.b:R(a.b)= 1) be such that R is

primitive with respect to {^(F)}^ and R G 73(F). Then G has uniformly
exponential growth.

Proof. If uj(R) > 3, Theorem 3.6 shows that the corresponding function
U{z) has a pole zo with 0 < z0 < 1. It follows that the coefficients cn{G)
grow exponentially. By Corollary 3.2, À*(G) > 1.
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