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3. UNIFORMLY EXPONENTIAL GROWTH
AND GROWTH OF GRADED ALGEBRAS

In this section we describe a method of estimating growth functions of a
group in terms of its graded Lie, and associative algebras defined via dimension
subgroups. We begin by recalling some concepts and notations.

As in [Gri] considerations were given with respect to a Galois field GF,,
here we modify the arguments for a field of characteristic 0, namely Q.

Let G be a group; denote by Q[G] the group algebra of G over Q,
and by A C Q[G] the augmentation ideal, that is the ideal generated by the
elements of the form g — 1, with g € G. Recall that the lower central series
of G 1s the sequence of subgroups {'yn(G)};”;l of G defined by v1(G) =G
and, for n > 2, 7,(G) = [G, 1,—1(G)].

The subgroup

G,={geG:g—1€A"}

is called the n-th dimension subgroup of G over Q and it has the following
characterisation due to Jennings [J] (see also [P: IV, Thm. 1.5] or [Pm: 11,
Thm. 1.10])

Gn=\1(G):={g€G:IkeN,g" €1(G}.

For any group G one defines as usual an associative graded algebra A(G)
and two graded Lie algebras L(G) and L(G) by

_A(G) —s é An/ArH—I
n=1

(o]

L(G) — @ [(Gn/Gn—l—l) Q7 Q}

L(G) = B [(m(G)/1m+1(G) ®z Q]

n=1

(see for instance [P], [Pm]). Quillen’s Theorem [Q] states that A(G) is the
universal enveloping algebra of L(G).
Assume now that G is finitely generated and set

a,(G) = dim(A" /A"y
b, (G) = rank(Gl’l/Gn-H)
cn(G) = rank(v,(G)/Yn+1(G))




>
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where, by rank, we mean the torsion free rank of the corresponding abelian
group. Then the following relations hold

n=0 n=1 n=1

The first equality follows easily from Quillen’s Theorem [Pm: Thm. 4.10,
Chapter 3] and the second one follows from the equality b,(G) = ¢,(G) as
proved in [Bel].

In [Be] it is also proved that

lim sup +/a,, = lim sup /¢, .

n—aec H—3oC

3.1. LEMMA. For any finite system of generators A of a group G the
following inequality holds :

(l,,(G) S A/',f(n): n 2 1 .

Proof. For x.y € G we have
p=1l=G=D+0-D+&— D= 1)
x =G -D=-G-DE"'-1)
so that
w—1l=@E—-1D+@(—-1) modA’
¥l =—x— 1) mod A?.
The ideal A" is spanned, over Q, by the elements of the form
)"1(X1 - 1)}"2(“’(2 - 1) e '}:N(xll - 1))’11—}—1 .
where x; € G and y; € Q[G], 1 <i<n, 1<j<n+1. Since
Y=Y kg => ks mod A, ky € Q
9€eG geG

a basis for the quotient space A"/A"*! can be chosen among the images
modulo A"*! of the elements of the form

(afl - 1)((1,‘2 - 1) T (Cl,'" - 1)7
k! g, where the

where a; € A. But (a; — 1)(a;, — (g, — 1) = dec g
summation extends over elements g of length at most n with respect to the
system of generators A. [
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3.2. COROLLARY. Let G be a finitely generated group and suppose
that the ranks of v,(G)/vn11(G) grow exponentially. Then G has uniformly
exponential growth and the estimate

A+(G) > lim sup \/rank(7,(G)/¥+1(G))

n—00

holds.

Recall that a group G is parafree of para-rank m if it is residually
nilpotent and the factors of consecutive groups in its lower central series
equal the corresponding ones of a free group of rank m. There are parafree
groups which are not isomorphic to free groups [B 2,3].

3.3. PROPOSITION. A finitely generated parafree group G of para-rank
m > 2 has uniformly exponential growth and "

A(G) > m.

Proof. 1t is known (see for instance [MKS: Thms. 5.11 (Witt’s Formulae)
and 5.12]) that for a free group F,, the rank of (v,(F,,)/Vnr1(Fn)) equals the
n-th coefficient of the Maclaurin power series of the function U(z) = 1/(1—mgz)
and the previous corollary can be applied. [

Given a parafree group G of para-rank m > 2 it would be interesting to
compare A.(G) with A\.(F,) =2m — 1.

3.4. PROBLEM. Is it true that, for a finitely generated para-free group
G of para-rank m > 2 which is not free, one has A\.(G) >2m —17?

In order to formulate the next statement we recall the following

3.5. DEFINITION. An element R € F is said to be primitive with respect
to the lower central series if, for all n > 2, it is not an n-th power
modulo v,r+1(F) where w(R) is the weight of R. (The latter is defined by

R € vuw(F) but R & vum+1(F).)




AMENABILITY AND GROWTH OF ONE-RELATOR GROUPS 349

3.6. THEOREM ([L 1,2]). Let R be an element of the free group F of
finite rank m which is primitive with respect 1o the lower central series.
Denote by k = w(R) its weight and by (R) the normal closure of R in F.
Let G=F/(R) and let L(F) and L(G) be the corresponding Lie algebras.
Let then r be the image of R in Ly(F), the k-th component of L(F) and
denote by I the ideal of L(F) generated by r.

Then I is the kernel of the canonical homomorphism of L(F) onto L(G),
Le.

L(G) = L(F)/I.

Moreover for all n > 1 the abelian group L,(G) is a torsion free group
whose rank is the n-th coefficient of the Maclaurin power series of the
function

U(z) =

1 —mz+ZF

4. MORE ON UNIFORMLY EXPONENTIAL GROWTH
OF ONE-RELATOR GROUPS

Any two-generated one-relator group G can be presented in the form
G = <a,b - dw(a. b) = 1> where &k € Z and w(a.b) belongs to the
commutator subgroup [F,F] of the free group F = F(a.b) freely generated
by a and b (this follows from Lemma 1.1). Since a and b constitute a basis
in F/v,(F) and [a.b] generates ¥,(F)/~3(F), one can also present G in the
form

G = <a,b - d'[a. b]]w(a,b) = 1>

where k.l € Z. and w(a.b) € vi(F).

In this section we shall see that, under suitable assumptions on k./ and
w(a. b), the corresponding group has uniformly exponential growth.

As an application of Labute’s Theorem we get the following:

4.1. PROPOSITION. Let G = (a.b:R(a.b)=1) be such that R is

primitive with respect to {ﬂ/n(F)}nOC: . and R € 3(F). Then G has uniformly
exponential growth.

Proof. If w(R) > 3, Theorem 3.6 shows that the corresponding function

U(z) has a pole zp with 0 < zp < 1. It follows that the coefficients c,(G)

grow exponentially. By Corollary 3.2, A\.(G) > 1. [J
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