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118 P. ALESSANDRI AND V. BERTHE

THEOREM 9. Let u = (u,),en be a coding of the rotation by irrational

angle «o. Suppose that there exists an interval of P of length L > sup(a, 1—a).

Let (@ien

associated to o in its continued fraction expansion. Let m, = (— D (gra— pr).
Write

and (cp)ren be the sequences of convergents and partial quotients

l—L=mng+ Mg+,

with k>1, 0 <) < and 1 <m < cpp1. The connectedness index n of
the sequence u satisfies

n =g — m—Dae — 1, if  # i,
nY =g —mgr — 1, if Y = and m < Cgyq,
n(l):qk—l, if v =m and m = ¢y, .

472  APPLICATIONS

Precise knowledge of the connectedness index is useful, as shown by the
following. Indeed Lemma 1 can be rephrased as follows.

LEMMA 3. Let u be a coding of an irrational rotation on the unit

circle with respect to the partition {[Bo, Bi[, 151, B2l - .., [Bp—1,B,1}. The
frequencies of factors of u of length n > n'V, where n'V denotes the

connectedness index, are equal to the lengths of the intervals bounded by
the points

{k(l—a)+ 6}, for 0<k<n—1, 0<i<p-—1.

The complexity of a coding on p letters of an irrational rotation ultimately
has the form p(n) = an + b, where a < p, and depends on the algebraic
relations between the angle and the lengths of the intervals of the coding.
More precisely, we have the following theorem proved in [1].

THEOREM 10. Let u = (u,)nen be a coding of the irrational rotation R
of irrational angle o with respect to the partition

P = {[/80751 [) [ﬁl)ﬁZ[) AL [/8[)—17/817[} -
Let (ky)nen be the sequence defined by

ko = p = card(F) ,
ko, =card {3 € F; Vke€[1,...,n], RT“B) ¢ F} .
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Let a be the limit of this sequence, n® the smallest index such that k, = a,

and let .
n®—1

b= > (k—a.
i=0
Let n'V denote the connectedness index of u.
If n > max(nV,n?), then the complexity of the sequence u satisfies

p(n) =an+b.

REMARKS.

e Note that if 1,0.08;.....53, are rationally independent, then n® = 0,
b=0 and a =p.

e Theorem 10 answers the question of the existence of sequences of
ultimately affine complexity (for more details, the reader is referred to [1],

see also the result of Cassaigne in [11]).

4.3 BEATTY SEQUENCES

The connections between the three gap theorem and the Beatty sequences
have been investigated by Fraenkel and Holzman in [26]. Let us recall that a
Beatty sequence is a sequence u(a. p) = (u,)nen of the form u, = lan+p].
where « and p are real numbers such that a > 1. The number a 1is called the
modulus and p is called the residue or intercept. For an impressive bibliography
on the subject, we refer the reader to [27] and [54]. Fraenkel and Holzman
have noticed in [26] that the three gap theorem answers the question of the
gaps in the intersection of a Beatty sequence and an arithmetical sequence
(an 4 ¢)yen, for a a positive integer and ¢ .an integer. This result has been
obtained independently by Wolff and Pitman in [58]. By intersection of the

two Beatty sequences s = (Sp)pen and 1 = (#)uen. We mean the strictly
increasing sequence u defined as:

{tt,. n € N} ={u. k.1 € N such that u = s, = 1;} .

Hence a gap in the intersection denotes the difference between two distinct
elements of the intersection.

Note that Beatty sequences and Sturmian sequences are related: let u be

a Beatty sequence of modulus o and residue p; the characteristic sequence
(U)nen of u defined as

vy = 1 if and only if there exists m such that n = |am + p|
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