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322 A. ZUK

Let |P|| be the operator norm of P acting on l2(T). In [8] Kesten proved:

THEOREM 1 (Kesten). The following conditions are equivalent:

(2) The group T is amenable, i.e. there exists a sequence {An}^fi=l of finite
subsets of r satisfying the F0lner condition.

In the next section we will prove a generalization of this result (Theorems 2

and 3), showing that equalities of the form jjP|| A, with 0 < A < 1, are

equivalent to appropriate Fplner-like conditions. Section 3 is devoted to some
remarks concerning this generalization. In Section 4 we use the generalized
Fplner condition to compute the norms of some random walk operators and

in Section 5, using the same ideas, we obtain some lower bounds for the

random walk operators on graphs.

After completion of this work, we learned that some versions of a

generalized Fplner condition were obtained recently by S. Popa [12].

Acknowledgements. I would like to express my gratitude to A. Hula-
nicki and to L. Saloff-Coste for several interesting discussions and remarks on
the paper, and for suggesting the example in Section 4.4. I also wish to thank
P. de la Harpe and the referee for their several valuable comments on this

paper. This work was done with the support of the Swiss National Science

Foundation.

Let us consider a measurable space (AT, J7). On this space we consider a

Markov transition kernel P(-,-)> i.e. for any x G X, P(x, •) is a probability
measure on (X, T) and P(-,A) is a measurable function on (X, T) for every

Let pi be a a -finite measure on the space (X, P*). F°r anY measurable

subset A C X we define its measure \A| and the measure \dA\ of its boundary
dA as follows:

a) \\p\\ i.

2. The generalized Folner condition

A G

IAI ß(A),
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We will suppose that the measure

(1) dm(x, y) dp(x)P(x, dy)

is symmetric on X xX. Let P be the Markov operator acting on L2(X, p) as

The above equation defines also an operator on the space of positive measurable

functions on X.
When condition (1) is satisfied we say that P is reversible with respect to

p. The Markov operator P is a self-adjoint operator on L2(X,p) if and only
if P is reversible with respect to p.

We denote by |v)l2(x,^) the scalar product on L2(X, p) and by ||P|| the

norm of P acting on L2(X,p).
For a real-valued measurable function / and for a measurable subset A C X

let us define a relative measure \A\p and a relative measure of its boundary

THEOREM 2. Let P be a Markov operator on a measurable space
{X.T7), which is reversible with respect to a measure p. Let f be a positive
eigenfunction of P with a positive eigenvalue A. Then the following conditions
are equivalent :

(1) There is a constant c > 0 such that for any measurable subset A C X of
finite measure

(2) |]P|| < A.

In the case where X is a Cayley graph of a group with a finite set of
generators S —S'like in Part 1, one can give the following formulation of
the above theorem.

\dA\f2 :

IA1^ < c,
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THEOREM 3. Let f be a positive eigenfunction for the simple random
walk operator P on the group F generated by a finite symmetric set S, with
the eigenvalue A, i.e.

pf y.
The following conditions are equivalent :

(1) mi-A.
(2) (Generalized F0lner condition) There exists a sequence {A^}^ of finite

subsets of r, such that

0.

Remark. In case where À 1 we can take the function / of Theorem 3

to be a constant function. We then obtain Kesten's theorem (Theorem 1).

There are also examples of amenable groups (see [2]) for which there

exist eigenfunctions of the simple random walk operator corresponding to the

eigenvalue equal to one and which are not constant. The generalized Fplner
condition applies also to them.

Theorem 2 will be deduced from the following proposition.

PROPOSITION 1 ([7,13]). Let Q be a Markov operator on which
is reversible with respect to a measure p. Assume that there exists a constant
c > 0 such that for any measurable subset A C X of finite measure

(2) \A\<c\dA\.

Then

II/Oil „ ~
^ - V2c

In order to give a clear proof of Proposition 1, we need the following
lemma.

LEMMA 1 ([13]). For a non-negative measurable function f with compact

support in X one has

I {xex} J {yex}

POO

Ifix)-f(y)\Q(x, dy)dfi(x)=2
Jo
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Proof

I f(x) ~
* {xex} J{vex}

2/ / (f(x)-f(y))Q(x,dy)d/j(x)
J{xX} J{yexj(x)>f00}

2 [ [ [ l[/iT)/(.r
J{y6X/(.v)>/Cr)} -/0

2 [ [ [ l[/tv)/w)WÔ(
Jo J{xeX} J {yX:f(x)>f(y)}

2 f( [ Q(x,dy)d/j,(x))dt
Jo yJ{xeX:f(x)>t} J{yexj(y)<t}'

2
p CO

/ |9{/>?}|rff.
Jo

Proof of Proposition 1. Let us consider a real-valued measurable function

/ with compact support in X. The above lemma applied to the function f2
and the strong isoperimetry condition (2) gives :

[ [ \f2(x)-f2(y)\Q(x,dy)dn(x) 2f\d{f2> t}\dt
J {aGA} J { YGA} J0

2 f°° 1 f> -I \f2 >-/ f2(x)d/j,(x).
c J 0 c Jx

On the other hand

[ [ \fHx)-f(y)\Q (x,dy)dfi(x)
J {aGA} J {};GA}

< [[ [/M-/(jO|(/M| + Lf(y)\)Q(xJ {aGA} J {yGA}

2/ [ \f(x)-f(y)\\f(x)\ Q(x,dy)d/j
J {aGA} J {\'GA}

2 [([ I/O) -f(y)\Q(x,dy)]\f(x)\dß(x)
J{xex} yj{yex} '

^ 2 [( [I fix) -f(y)\2Q(x,1

./'(.V) f///(.vj
J {aGA} J { YGA} f

-2([ [ \f(x)-f(y)\2Q(x,dy)dß(x
yJ{xex} J{yex} / vJ{.vex} '

2V2((I-Q)fJ)l{xJ\f\\LHx^.
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Hence

As Q is a self-adjoint operator, this is equivalent to

llôlUw^)<i-^<i-
Let P be a Markov operator, reversible with respect to the measure fi.

Let / be a positive eigenfunction of P for the eigenvalue À.

LEMMA 2. 77z<? operator defined by the kernel

Q(x,dy)A ~1f(x)~

is a Markov operator and is reversible with respect to the measure f2p.

Proof. The kernel Q(x, dy) is a Markov transition kernel, because :

/ Q(x,dy) \~lf(x)~l [ A-1/^)-1 A/(x) 1.
«{yEX} J {yzX}

In order to prove reversibility of Q, we have to prove that the measure

dm'(x,y)=f2(x)dß(x)Q(x,dy)

is symmetric on X x X, knowing that the measure

dra(x, y) d/i(x)P(x, dy)

is symmetric on X x X.
This follows from the following equalities, where B is a measurable subset

of X x X :

[ dm'(x, y)[ f2(x)dn
Jb JB

=A-1 [
Jb

^"1
Jb=A-1 [
Jb

dm'(y,x).
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Proof of Theorem 2. Clearly, condition (2) in Theorem 2 implies condition

(1). In order to prove the converse let us consider the Markov operator Q

defined in the previous lemma and the measure f2\i on X. Here we add to

the notation for \A\ and \dA\ an index (ß,/2/i) in order to distinguish when

these notions are used for (P,/i) or for (Q,f2fi). One has

\A\(Q,ffi)_ f f2(x)dp(x)I AU
J{x£A}

|0A| (ß,/U) /f \f-\x
J {x£A} J {yeAc} A

t [[ f(x
Ä J{x£A} J{y£A'}A

The first condition implies that there exists c' > 0 such that

c>\dA\(ß./V)> |A|(ß./U);

which by Proposition 1 implies that

\\Q\\L2(X,Ph)^L2(X,PH)<1
•

Let pIIQII p(xtf2fi)-*L2(x,f2ij,yForany T2(X. p) :

(Pg,g)ii(x,ß)«=A (o fjf<Xp/ll\\ \J J J J,/V)
^p(g^g)i2(x,ß)

As P is a self-adjoint operator and p <1, this implies

ll-^ll L2(X,ß)-xL2(X,ß) < ^D

Proof of Theorem 3. One knows (see Section 3) that P has positive
eigenfunctions only for the eigenvalues greater than or equal to [|P||. So the
second condition implies the first one.

In order to prove the converse, we remark that for 7 ~ 7' g T one has :

j^fd') <fh) <x(WCV),
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This implies that

>/-£/2(7)>
7GA

\dA\p<Yf2^^ X\dA\p
7£<9A

By Theorem 2, the first condition implies the second one.

Remark. The proof of Theorem 3 can easily be generalized to the

case where P is a convolution operator with a finitely supported probability
measure.

3. Remarks

We will now make some comments about Theorems 2 and 3. We will
state some theorems about the existence of eigenfunctions for the Markov

operator and discuss whether one can take in the generalized Fplner condition
the eigenfunctions to be in L2(X1 p).

For simplicity we will suppose that X is a connected, locally finite graph
(i.e. the degree of each vertex is finite) and we consider the simple random
walk going with equal probability from one vertex to any of its neighbors. We

associate with this random walk the simple random walk operator P defined by

pm d— Yfw for /e Uvao
W~v

where N(v) is the degree of vertex v in X (i.e. the number of edges adjacent

to v), where w ~ v means that w and v are connected by an edge and

where l2(X,N) is the space of real-valued functions / on the vertices of X
such that J2xexf2(xW(x) is finite.

3.1 Existence of eigenfunctions

THEOREM 4 ([20]). Let X be an infinite, locally finite graph and let P

be the simple random walk operator on l2(X,N). For any À > ||P|| there

exists a positive eigenfunction f of P with eigenvalue i.e.

Pf(x) — Àf(x) and f(x) > 0 for x G X

For X < ||jP|| there are no positive eigenfunctions of P with eigenvalue X.
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