

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. [Siehe Rechtliche Hinweise.](https://www.e-periodica.ch/digbib/about3?lang=de)

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. [Voir Informations légales.](https://www.e-periodica.ch/digbib/about3?lang=fr)

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. [See Legal notice.](https://www.e-periodica.ch/digbib/about3?lang=en)

Download PDF: 19.11.2024

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

6. Applications

LEMMA 13. Let M be a closed hyperbolic surface of genus g which has $2g - 2$ simple closed geodesics u_1, \ldots, u_{2g-2} which all intersect in the same point Q and intersect in no other point. Then M has simple closed curves u_{2g-1} and u_{2g} , passing through Q, such that the curves u_i intersect in no other point than Q, $i = 1, \ldots, 2g$. Moreover, u_{2g-1} and u_g can be chosen such that

$$
M\setminus \bigcup_{i=1}^{2g} u_i
$$

is the interior of a canonical polygon $P(g)$.

Proof. Cut M along u_1 , the result is a hyperbolic surface M_1 with boundary and genus $q - 1$, the boundary consists of two simple closed geodesics v_1 and w_1 . Cut M_1 along u_2 , the result is a hyperbolic surface M_2 with one boundary component v_2 and genus $g - 1$. Now cut M along all $2g - 2$ simple closed geodesics u_1, \ldots, u_{2g-2} . By induction, the result is a hyperbolic surface M_{2q-2} with one boundary component v and genus 1. More precisely, the boundary v is piecewise geodesic with $4g - 4$ pieces and we may assume that the notation is chosen such that these pieces appear on v in the order (the pieces are called like the corresponding closed curves) $u_1, u_2, \ldots, u_{2q-2}, u_1, u_2, \ldots, u_{2q-2}$ (note that closed geodesics intersect transversally). Denote by S and S' the two copies of Q on v between u_1 and u_{2g-2} . Let u_{2g-1} be a simple geodesic in M_{2g-2} which joins S and S' such that u_{2g-1} is not homotopic to a part of v. Cut M_{2g-2} along u_{2g-1} . The result is a hyperbolic surface M_{2q-1} of genus zero with two boundary components w and w' which both consist of $2g-1$ geodesic pieces in the order $u_1, u_2, \ldots, u_{2q-2}, u_{2q-1}$. Denote by R and R' the copies of Q between u_1 and u_{2g-1} on w and w', respectively. Let u_{2g} be a simple geodesic in M_{2q-1} which joins R and R', u_{2q} can be chosen such that when we cut M_{2g-1} along u_{2g} , then we obtain the interior of a canonical polygon as desired.

DEFINITION. A hyperelliptic surface is ^a closed hyperbolic surface of genus g which has an isometry ϕ with $\phi^2 = id$ and with exactly $2g + 2$ fixed points.

In [14], the equivalence of (i) and (ii) of the following theorem was first proved. With the approach chosen here, we can give ^a third equivalence and a different proof.

THEOREM 14. Let M be a closed hyperbolic surface M of genus g . Then the following conditions are equivalent.

- (i) M is hyperelliptic.
- (ii) M has a set of at least $2g-2$ simple closed geodesics which all intersect in the same point and intersect in no other point.
- (iii) M has ^a corresponding canonical polygon with equal opposite angles $(\alpha_i = \alpha_{2q+i}, i=1,\ldots,2g).$

Proof. I shall prove (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (i).

Let M be hyperelliptic. Let R_i , $i = 1, \ldots, 2g + 2$, be the fixed points of a hyperelliptic involution ϕ . Let c_1 be a simple geodesic segment from R_1 to R_2 . Then $c_1 \cup \phi(c_1)$ is a simple closed geodesic u_1 since $\phi^2 = id$. It also follows that on u_1 , there are only two fixed points of ϕ and that $M_1 = M\setminus u_1$ is connected. Therefore, we can choose a simple geodesic segment c_2 from R_1 to R_3 which intersects u_1 only in R_1 . By the same argument as above, $c_2 \cup \phi(c_2)$ is a simple closed geodesic, $M_2 = M\setminus (u_1\cup u_2)$ is connected and on $u_1 \cup u_2$, there are only three fixed points of ϕ . Continuing this construction we can find simple closed geodesics u_1, \ldots, u_{2q-2} which all intersect in R_1 and in no other point. This proves (i) \Rightarrow (ii).

Figure 6

The partition of a canonical polygon $P(g)$ into two $(2g - 1)$ -gons and two quadrilaterals

Assume now that M has $2g - 2$ simple closed geodesics u_1 , ch all intersect in the same point Q and intersect in no other closed geodesics u_1, \ldots, u_{2g-2} which all intersect in the same point Q and intersect in no other point. By Lemma 13 we then can find simple closed curves u_{2g-1} and u_{2g} such that

$$
M\setminus \bigcup_{i=1}^{2g} u_i
$$

is the interior of a canonical polygon $P(q)$ with the usual notation. For $i = 1, \ldots, 4g$, let $\{Q_i\} = a_i \cap a_{i+1}$. In $P(g)$ let d_1 be the geodesic segment from Q_{4g} to Q_{2g-2} , d_2 the geodesic segment from Q_{2g} to Q_{4g-2} , and d the geodesic segment from Q_{2g} to Q_{4g} , compare Figure 6. Then $P(g)\setminus (d_1\cup d_2\cup d)$ has four connected components, two quadrilaterals W_j having d and d_j , $j = 1, 2$, among the sides and two $(2g - 1)$ -gons V_j having d_j among the sides, $j = 1, 2$. Since u_i , $i = 1, ..., 2g - 2$, are simple closed geodesics, it follows that $\alpha_i = \alpha_{i+2g}$ for $i = 1, \ldots, 2g - 3$. This implies that V_1 and V_2 are isometric and that d_1 and d_2 have the same length. Therefore, W_1 and W_2 are quadrilaterals with equal lengths of the four sides. Fix now W_1 and try to vary W_2 such that the lengths of the sides remain invariant and so that property (V) for canonical polygons holds. This is certainly the case if W_2 and W_1 are isometric. But then Corollary 8 implies that this is the unique possibility. Therefore, W_1 and W_2 must be isometric and hence $\alpha_i = \alpha_{i+2g}$ for all $i = 1, \ldots, 2g$, which proves (ii) \Rightarrow (iii).

Now assume that (iii) holds. Let d be the geodesic segment from Q_{2g} to Q_{4g} . Then d separates $P(g)$ into two isometric $(2g + 1)$ -gons and the π rotation around the centre C of d induces an isometry ϕ of M with $\phi^2 = id$. The fixed points of ϕ are C, the point Q corresponding to the vertices of $P(g)$ as well as the centres of the sides a_i , $i = 1, \ldots, 2g$. Therefore, ϕ is a hyperelliptic involution which proves (iii) \Rightarrow (i). \mathcal{L}

COROLLARY 15. All closed hyperbolic surfaces of genus 2 are hyperelliptic.

Proof. All closed hyperbolic surfaces have two simple closed geodesics which intersect in ^a unique point. The corollary follows by Theorem 14. \Box

DEFINITION. Let M_0 be a closed hyperbolic surface in T_a . For every $M \in T_g$ fix a homeomorphism ϕ_M , homotopic to the identity, from M_0 to M (ϕ_M exists since closed surfaces of the same genus are homeomorphic). Let u be a simple closed geodesic in M_0 . Then, in the homotopy class of $\phi_M(u)$ there exists a unique simple closed geodesic which is denoted by $\Phi_M(u)$. The function

$$
L(u)\colon T_g\to\mathbf{R}
$$

which associates to M the length of $\Phi_M(u)$ is called a geodesic length function.

REMARK. It is well known that T_g can be parametrized by a finite number of geodesic length functions, see for example [12], [13] where it is shown that T_g can be parametrized by $6g - 5$ geodesic length functions.

THEOREM 16. The Teichmüller space T_g for $g=2$ can be parametrized by 7 (suitably chosen) geodesic length functions $L(u_1), \ldots, L(u_7)$, taken as homogeneous parameters (which means that $L(u_1)/L(u_7), \ldots, L(u_6)/L(u_7)$ gives a parametrization of T_2).

Proof. Let $P(2)$ be a canonical polygon corresponding to a closed hyperbolic surface M_0 of genus 2. As usual let $Q_i = a_i \cap a_{i+1}, i = 1, \ldots, 8$, where the a_i are the sides of $P(2)$. Let b_i be the geodesic segment (in $P(2)$) between Q_i and Q_{i+4} , $i = 1, \ldots, 4$. By Corollary 15, M_0 is hyperelliptic, therefore (compare Theorem 14) b_i corresponds to a simple closed geodesic in M_0 , denoted by B_i , $i = 1, \ldots, 4$. It also follows by Theorem 14 that a_i corresponds to a simple closed geodesic in M_0 , denoted by A_i , $i = 1, \ldots, 4$.

Figure ⁷ A triangulation of a canonical polygon $P(g)$ for $g = 2$

I now prove that the ⁷ length functions, given by the simple closed geodesics A_i , $i = 1,2,3$, B_i , $i = 1,...,4$, taken as homogeneous parameters, give a parametrization of T_2 . In order to do this, it is enough (by Theorem 11 and Corollary 12) to show that $P(2)$ is uniquely determined by the lengths of a_i , $i = 1,2,3$, b_i , $i = 1,...,4$, taken as homogeneous parameters (in the sequel I shall refer to these lengths calling them "the seven lengths"). This can be done analogously as in the proof of Theorem 11. The geodesic segments b_i , $i = 1, ..., 4$, intersect in a point C, the "centre" of $P(2)$, and they separate $P(2)$ into 8 triangles D_i so that a_i is a side of D_i , $j = 1, \ldots, 8$, compare Figure 7. Since M is hyperelliptic, D_j and D_{j+4} are isometric, $j = 1, \ldots, 4$. Denote by δ_i the angle of D_i in the vertex C, $i = 1, \ldots, 4$. The seven lengths determine the triangles D_i , $i = 1,2,3$, as well as two sides and the angle δ_4 of D_4 by the condition

(6)
$$
\Delta := \sum_{j=1}^4 \delta_j = \pi,
$$

so they determine also D_4 . This shows that the seven lengths determine $P(2)$. Multiply the seven lengths by a positive real t and assume that the seven new lengths also determine a canonical polygon $P_t(2)$. If $t > 1$, then δ_i , $i= 1,2,3$, are smaller in $P_t(2)$ than in $P(2)$ by Lemma 9, therefore, by (6), δ_4 is larger in $P_1(2)$ than in $P(2)$. It follows by Lemma 7 that the sum of the two other angles of D_4 is smaller in $P_1(2)$ than in $P(2)$. Since all angles in D_i , $i = 1,2,3$, are smaller in $P_i(2)$ than in $P(2)$ by Lemma 9, it follows that

$$
\sum_{i=1}^4 \alpha_i
$$

is smaller in $P_1(2)$ than in $P(2)$. But this contradicts condition (II) of canonical polygons. An analogous contradiction follows if $t < 1$ proving thus that $t = 1$ and therefore the theorem.

REMARK. Theorem 16 is new. It is well known that $6g - 6$ length functions can never parametrize T_g so that the situation of Theorem 16 is the best we can expect. It is not known whether $6g - 5$ geodesic length functions, taken as homogeneous parameters, can parametrize T_q for $q \geq 3$.

REFERENCES

- [1] BEARDON, A.F. The Geometry of Discrete Groups. Springer, 1983.
- [2] BUSER, P. Geometry and Spectra of Compact Riemann Surfaces. Birkhäuser, Boston, 1992.
- [3] COLDEWEY, H.-D. Kanonische Polygone endlich erzeugter Fuchsscher Gruppen. Dissertation, Bochum, 1971.
- [4] FORD, L. Automorphic Functions. Chelsea, New York, 1929.
- [5] IVERSEN, B. Hyperbolic Geometry. Cambridge University Press, 1992.
- [6] JOST, J. Compact Riemann Surfaces. Springer, 1997.
- [7] KATOK, S. Fuchsian Groups. The University of Chicago Press, 1992.