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30 P. BAUM AND A. CONNES

COROLLARY 7. If 7 e(p), for some p G H2(F, R), then the subgroup

of R, A trr(Xo(C*(r, 7))) contains the group :

ch K* (BT), exp(p)

This follows from Theorem 6 and Lemma 5 b).

Moreover, when the map p is an isomorphism, one can conclude that

À (ch^*(#r),exp(p)). Thus using Theorem 3 we get:

COROLLARY 8. Let r be the fundamental group of a compact Riemann

surface of positive genus, 7 G H2(r, S1) a 2-cocycle and 0 G R/Z
c/ass 0/ 7 in H2{T,R)/H2(T,Z) R/Z. TTzen image a/ &o(Cp(r, 7)) by
the canonical trace Trp is equal to the subgroup Z + ^ZcR.

Since, for g > 1, the trace trr is the unique normalized trace on

C*(T,7) (for any value of 7), one gets that the corresponding C*-algebras
are isomorphic only when the F 's are the same (using K\ and when the 7's
are equal or opposite (in H2(F, S1)).

9. Foliations

Let V be a C°°-manifold, and let F be a C°°-foliation of V. Thus F is

a C°°-integrable sub-vector bundle of TV. As in [33] let G be the holonomy

groupoid (graph) of (V,F). The manifold V is assumed to be Hausdorff
and second countable. G, however, is a C°°-manifold which might not be

Hausdorff. A point in G is an equivalence class of C°°-paths

7: [0,1]-V
such that 7(/) remains within one leaf of the foliation for all t G [0,1]. Set

5(7) 7(0), r(7) 7(1). The equivalence relation on the 7 preserves 5(7)
s

and r(7) so G comes equipped with two maps G =4 V.
r

Let Z be a possibly non-Hausdorff C°°-manifold. Assume given a C°°-map

p: Z ^ V, set

Z O G{(z,7)Z x G I 5(7)} •

A C°° right action of G on Z is a C°°-map
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Z o G —> Z

denoted by (z,7)n
such that

p(n)Kt) (Z7) l' 2(77'), Z

where lp denotes the constant path at p EV.
An action of G on Z is proper if:

(i) the map ZoG-^ZxZ given by (2,7) (z,ry) is proper (i.e. the inverse

image of a compact set is compact);

(ii) the quotient space Z/T is Hausdorff. Here Z/T is the set of equivalence
classes of z G Z where z ~ zf if, for some 7 G G, 27 z7.

Specializing to Z V, the groupoid G acts on V by p(p) p and

PI « 7(1)

(p G V, 7 G G, p 7(0)). For many examples this action of G on y is not

proper. Set TPV/FP, so that ^ is the normal bundle of the foliation, z/

is a G-vector bundle since the derivative of holonomy gives a linear map

Up
1 > '

This is, of course, just the well-known fact that v is flat along the leaves of
the foliation.

More generally, if Z is a G-manifold, then the orbits of the G-action
foliate Z. Denote the normal bundle of this foliation by v. Then v is a

G-vector bundle on Z.
If Z is a proper G-manifold, a G-vector bundle on Z with G-compact

support is a triple (E0,Ei,o) where E0,Ei are G-vector bundles on Z and

a: E0 —> Ei is a morphism of G-vector bundles with Support(cr) G-compact.
As in §2 above one then defines VlG(Z) and KlG(Z), i — 0,1. These are defined
and used only for proper G-manifolds.

Definition 1. A K-cocycle for (V,F) is a pair (Z,0 such that

(1) Z is a proper G-manifold,

(2) £ G Vq[(v)* ® where p: Z V is given by the action of G
on Z.

In [12] and [14] a canonical C*-algebra C*(V,F) is constructed. This
C*-algebra can heuristically be thought of (up to Morita equivalence) as the
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algebra of continuous functions on the "space of leaves" of the foliation. Thus

K*C*(V,F) can be viewed as the K-theory of the "space of leaves" of the

foliation.
To define the geometric ^-theory K*{V,F) we proceed quite analogously

to §2 above.

THEOREM 2. Let (Z, £) be a cocycle for (V,F). Then (Z, £) determines

an element in 2£*C*(y, F).

Proof. If p : Z —> V is a submersion then £ gives rise to the symbol of a

G-equivariant family of elliptic operators D, parametrized by the points of V.
The ^-theory index of this family D is the desired element of K±C*(V. F).

If p: Z —> V is not a submersion, then as in the proof of Theorem 1 of
§2 one reduces to the submersion case.

Remark 3. With D as in the proof of the Theorem, Index(D) G FT*C*(V, F)
will be denoted /z(Z, £). For £ G VlG [{V)* © p* i/*], /i(Z,£) G ^C*(V,F),
/ 0,1.

Suppose given a commutative diagram

Zx z2

PI \ k/ P2

y
where Zi, Z2 are G-manifolds with Zl5 Z2 proper and F is a G-map. There

is then a Gysin map

Fr : K*G [(î/O* © pï i/*] -+ 4 [(F2)* 0 p\ i/*]

THEOREM 4. // £i G [(^)* 0 p\ v] then p(Zu^) /i(Z2, Ä.(£i))-

Remark 5. Let r(y,F) be the collection of all ZGcocycles (Z, £) for

(y,F). On F(y, F) impose the equivalence relation where (Z, £) ~ (Z',^)
if and only if there exists a commutative diagram

z JU z" z'

p \ i p" / p'

y
with F and h! G-maps and with /n(£) M(£')-
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DEFINITION 6. K*(V, F)r(V, F)/~ Addition in K*(V, F) is by disjoint

union of /f-cocycles. The natural homomorphism of abelian groups

K\V,F)-+KiC*(V,F)

is defined by
(Z, 0-+M(Z,0-

CONJECTURE, p: K*(V,F) —> K*C*(V,F) is an isomorphism.

Remark 7. Calculations of M. Pennington [25] and A.M. Torpe [32]

verify the conjecture for certain foliations.

Given (V,F), let BG be the classifying space of the holonomy groupoid
G. Since v is a G-vector bundle on V, v induces a vector bundle r on BG.

As in §3 above there is then a natural map

Kl(BG)^K*(V,F).

PROPOSITION 8. The natural map Kl(BG) K*(V,F) is rationally
injective. If G is torsion free then Kl(BG) —> K*(V,F) is an isomorphism.

Remark 9. Examples show that for foliations with torsion holonomy, the

map Kl(BG) —> K*(V,F) may fail to be an isomorphism.

THEOREM 10. If F admits a C°° Euclidean structure such that the
Riemannian metric for each leaf has all sectional curvatures non-positive,
then

pL-.K*<y,F)~*K+c*(y,F)

is injective.

10. Further developments

The theory outlined in §§1-8 can be developed in various directions. We
very briefly mention two of them here.

Let A be a C*-algebra. If G is a Lie group and X is a G-manifold, then
using A as coefficients there is both a geometric and an analytic ^-theory for
(X, G). The analytic X-theory is the X-theory of the C*-algebra (C0(X) x G)0A.
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