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364 M. OJANGUREN AND I. PANIN

We now recall three elementary, well-known facts about hermitian spaces.

PROPOSITION 1.5. Let (P,a) be any space. Then:
The space (P,a) L (P,—a) is hyperbolic.
2. If L is a lagrangian of (P, ), then (P,c«) is isometric to H(L).

If M is a sublagrangian of (P, ), then the map o induces on M+ /M a
natural structure of hermitian space that makes it Witt equivalent to (P, ).

2. K-THEORETIC PRELIMINARIES

We recall a few results proved in the twelfth chapter of Bass’ book [1]. For
any ring A we denote by Ky(A) the Grothendieck group of finitely generated
projective right A-modules and by K;(A) the abelianized general linear group
of A: Ki(A) = GL(A)/[GL(A), GL(A)]. By Whitehead’s lemma K;(A) is also
the quotient of GL(A) by the subgroup E(A) generated by all elementary
matrices over A.

For any functor F from rings to abelian groups we denote by N F(A)
the kernel of the map F(A[f]) — F(A) obtained by putting ¢ = 0. Similarly,
we denote by N_F(A) the kernel of F(A[t™!]) — F(A) obtained by putting
t~1 = 0. The inclusions of A[f] and A[t~!] into A[t,#~!] define a map

NLF(A) & N_F(A) — F(A[1,1'])

whose cokernel will be denoted by LF(A). The functor LK; turns out to be
naturally isomorphic to K,, hence we will denote LK; by K;_; for i =1
and also for i = 0.

THEOREM 2.1. Let A be any associative ring.
(a) For i =0 or 1 there exists a natural embedding

Ait Kis1(A) — Ki(Alt, ')
such that the composite
Ki1(A) 25 KA, ') — LKi(A) = Ki_ 1 (A)

is the identity.
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(b) The embedding X\; and the canonical homomorphism
N1Ki(A) — Ki(Al1,17'])
yield canonical decompositions
Ki(Alt, ') = Ki(4) @ N1 K1(4) & N_K1(A) ® Ko(4)

and

Ko(Alt,t']) = Ko(A) @ N1 Ko(A) & N-Ko(A) & K_1(A4).

Proof. See [1], Theorem 7.4 of chapter XII. [
We will also use the following well-known result.

PROPOSITION 2.2. If 2 is invertible in A, the groups N1 K;(A) are uniquely
divisible by 2.

Proof. By [1], XII, 5.3, every element of N K;(A) can be represented
by a matrix « = 1+ vt, with v a nilpotent matrix of M,(A). Let

o0
PX) =Y ("A)Xx" € Z[1/2][X].
0
Then P(vt) € M,(A[¢t]) and (P(I/t))2 = 1 4 vt. This shows that N, K (A) is
divisible by 2. To show uniqueness it suffices to show that N, K;(A) has no
2-torsion. Take o = 1 4 vt as before and suppose that o € E(A[t]). Put
s =12 4+ vt), so that a®> = 1 + vs. Since

oo

f = Z (1’/12)Vn—lsn
1
we have M,(A)[f] = M,(A)[s]. If o?> = 1 + vs € E(A[s]) = E(M,(A)[s]) we
clearly also have a = 1+ vt € E(M,(A)[t]). [

COROLLARY 2.3. If 2 is invertible in A, the groups NLKy(A) are uniquely
divisible by 2.

Proof. Ky(A) is a direct factor of K;(A[X,X!]), hence N1Ky(A) is a
direct factor of Ny K;(A[X, X~ ']D. [

Assume now that A has an involution. Associating to any projective module
its dual and to any matrix its conjugate transpose yields actions of Z/2 on
Ko and K; which are compatible with the decompositions of Theorem 2.1.
From Corollary 2.3 we immediately deduce
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COROLLARY 2.4. Suppose that A is a ring with involution, in which 2 is
invertible. Then

H*(Z/2,Ko(Alt, t'])/Ko(A)) = HA(Z /2, K_1(A)) .

3. THE WITT GROUP OF POLYNOMIAL RINGS

THEOREM 3.1. Let A be an associative ring with involution, in which
2 is invertible. Let € be 1 or —1 and let W be the Witt group functor of
e-hermitian spaces. The natural homomorphism

W(A) — W(AlD
is an isomorphism.

Proof. 1t suffices to show that the homomorphism W(A[z]) — W(A) given
by the evaluation at ¢+ = 0 is an isomorphism. Surjectivity is obvious. To
prove injectivity let (P, ) be a space over A[f] and (P(0), a(0)) its reduction
modulo ¢. Suppose that (P(0), «(0)) is isometric to some hyperbolic space
H(Q). Choosing a projective module Q' such that Q& Q' is free and adding
to (P,a) the space H(Q'[t]) we may assume that P(0) is the hyperbolic
space over a free module. The class of P in Ky(A[f])/Ko(A) = Ni(A) is
a symmetric element. By Corollary 2.4 it can be written as a 4 a*, hence,
adding to (P, «) a suitable free hyperbolic space, we may assume that (P, o)
is of the form

HA"1) L (RS R",).

Let R’ be an A[f]-module such that R @ R’ is free. Adding to (P,«) the
hyperbolic space H(R') we are reduced to the case in which P is free and
o 1s an invertible e-hermitian matrix with entries in A[f].

LEMMA 3.2. Let o = ea™ € M, (A[t]) be any e-hermitian matrix. There
exist an integer m and a matrix T € GL,12,(A[?]) (actually in E,»,(Alt]))

such that
T T = Qo+ tay,
0 x

where o and «; are constant matrices and x is a sum of hyperbolic blocks

(601 é) of various sizes.
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