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364 M. OJANGUREN AND I. PANIN

We now recall three elementary, well-known facts about hermitian spaces.

PROPOSITION 1.5. Let (P, a) be any space. Then:

1. The space (P, a) _L (P, — a) is hyperbolic.

2. If L is a lagrangian of (P, a), then (P, a) is isometric to H(L).
3. If M is a sublagrangian of (P, a), t/zen the map a induces on M1- /'M a

natural structure of hermitian space that makes it Witt equivalent to (P, a).

2. ^-THEORETIC PRELIMINARIES

We recall a few results proved in the twelfth chapter of Bass' book [1]. For

any ring A we denote by Kq(A) the Grothendieck group of finitely generated

projective right A-modules and by K\(A) the abelianized general linear group
of A : K\{A) GL(A)/[GL(A),GL(A)]. By Whitehead's lemma KfA) is also

the quotient of GL(A) by the subgroup E(A) generated by all elementary
matrices over A.

For any functor F from rings to abelian groups we denote by N+F(A)
the kernel of the map F(A[t]) —» F(A) obtained by putting t 0. Similarly,
we denote by N-F(A) the kernel of P(A[r-1]) —> F(A) obtained by putting
t~l 0. The inclusions of A[t] and A[t~~l] into A[t, t_1] define a map

N+F(A) © AGP(A) —f F(A[t, r1])

whose cokernel will be denoted by LF(A). The functor LK\ turns out to be

naturally isomorphic to Ko, hence we will denote LKi by 1 for i 1

and also for i — 0.

THEOREM 2.1. Let A be any associative ring.

(a) For i 0 or 1 there exists a natural embedding

A f. Ki^A)

such that the composite

Ki-i(A)-EKi(A[ty r1]) L^.(j4)

is the identity.
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(b) The embedding A/ and the canonical homomorphism

N±Kj(A) —> Ki(A[t,r1])

yield canonical decompositions

K\(A[t,r1])ä"!(A) ® N+K^®N-Ki(A) © K0(A)

and

K0(A[t, r1]) K0(A) © N+Ko(A) 0 N-K0(A) 0 K^(A).

Proof. See [1], Theorem 7.4 of chapter XII.

We will also use the following well-known result.

PROPOSITION 2.2. If 2 is invertible in A, the groups N±K\(A) are uniquely

divisible by 2.

Proof By [1], XII, 5.3, every element of JV+Xj(A) can be represented

by a matrix a 1 + vt, with v a nilpotent matrix of Mn(A). Let
ooP(X)Ci2)xn e Z[1/2][X].
0

Then P(yt) G Mn(A[t]) and (P(ut))2 1 + vt. This shows that N+K\(A) is

divisible by 2. To show uniqueness it suffices to show that A^+J^i(A) has no
2-torsion. Take a tm 1 © vt as before and suppose that a2 e E(A[t]). Put

s t(2+vt), so that a2 I +vs.Since
OO

1

we have Mn(A)[t] Mn{A)[s].If a21 + vsGE(A[s]) E(M„(A)[s]) we
clearly also have a — 1 0 vt G E(Mn(A)[t]).

COROLLARY 2.3. If 2 zA invertible in A, the groups N±K0(A) are uniquely
divisible by 2.

Proof K0(A) is a direct factor of ^i(A[X,X_1]), hence N±K0(A) is a

direct factor of N±K1 (A[X,
1 ]).

Assume now that A has an involution. Associating to any projective module
its dual and to any matrix its conjugate transpose yields actions of Z/2 on
K0 and K\ which are compatible with the decompositions of Theorem 2.1.
From Corollary 2.3 we immediately deduce
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COROLLARY 2.4. Suppose that A is a ring with involution, in which 2 is

invertible. Then

THEOREM 3.1. Let A be an associative ring with involution, in which
2 is invertible. Let e be 1 or — 1 and let W be the Witt group functor of
e-hermitian spaces. The natural homomorphism

is an isomorphism.

Proof. It suffices to show that the homomorphism W(A[t]) —» W(A) given

by the evaluation at t 0 is an isomorphism. Surjectivity is obvious. To

prove injectivity let (P, a) be a space over A[t] and (P(0), a(0)) its reduction
modulo t. Suppose that (P(0), a(0)) is isometric to some hyperbolic space

H{Q). Choosing a projective module Q' such that <20 Q! is free and adding
to (P, a) the space H{Q'[t\) we may assume that P(0) is the hyperbolic

space over a free module. The class of P in Ko(A[t])/Kq(A) N+(A) is

a symmetric element. By Corollary 2.4 it can be written as a 0 a*, hence,

adding to (P, a) a suitable free hyperbolic space, we may assume that (P, a)
is of the form

Let R' be an A[t] -module such that R 0 R' is free. Adding to (P, a) the

hyperbolic space H{R') we are reduced to the case in which P is free and

a is an invertible e-hermitian matrix with entries in A[t\.

LEMMA 3.2. Let a eot G Mn(A[t\) be any e-hermitian matrix. There

exist an integer m and a matrix r G GLn+2m(Mf\) (actually in E„+2
such that

where ao and ot\ are constant matrices and x i>s a sum of hyperbolic blocks

//2(Z/2, K0(A[t,t~1])/K0(A)) H2(Z/2,

3. The Witt group of polynomial rings

W(A) —> W{A[t])

H(An[t]) ±(R®R*,ß)

0 '
of various sizes.
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