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2. Theorems on plane polygons

In this section we formulate our results for plane polygonal curves. The

proofs will be given in Section 4.1.

2.1 Discrete 4-vertex theorem

The osculating circle of a smooth plane curve at a point is the circle (or

straight line) that has 3rd order of contact with the curve at the given point. One

may say that the osculating circle goes through 3 infinitely close points; at a

vertex the osculating circle passes through 4 infinitely close points. Moreover,
a generic curve crosses the osculating circle at a generic point and stays

on one side of it at a vertex. This well-known fact motivates the following
definition.

Let P be a plane convex n-gon; throughout this section we assume that

n > 4 Denote the consecutive vertices by Vf f,.., Vn ; the subscripts are

understood cyclically, that is, Vn+i V\, etc.

Definition 2.1. A triple of vertices (V;, Vi+i, V/+2) is said to be

extremal1) if Vi-1 and Vi+3 lie on the same side of the circle through
Vj, V)_|_i, V/_|_2 (this does not exclude the case where V/_,j or V;+3 belongs to
the circle).

The next result follows from a somewhat more general theorem due to
O. Musin and V. Sedykh [12] (see also [13]).

1

We have a terminological difficulty here : as we are dealing with polygons, we cannot use
the term "vertex" in the same sense as in the smooth case; hence the term "extremal".

a) not extremal b) extremal

Figure 1
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THEOREM 2.2. Every plane convex polygon P has at least 4 extremal
triples of vertices.

Example 2.3. If P is a quadrilateral then the theorem holds tautologically
since the (i - l)st vertex coincides with the (i + 3)rd for every i.

Remark 2.4. An alternative approach to discretization of the 4-vertex
theorem consists in inscribing circles in consecutive triples of sides of a

polygon (the centre of such a circle is the intersection point of the bisectors
of consecutive angles of the polygon). Then a triple of sides (êîf£i+i ,lm) is
said to be extremal if the lines ii+3 either both intersect the corresponding
circle or both fail to intersect it. With this definition an analogue of Theorem 2.2
holds true [19, 16], and this, in the limit, also provides the smooth 4-vertex
theorem.

Both formulations, concerning circumscribed or inscribed circles, make
sense on the sphere. Moreover, they are equivalent via projective duality.

2.2 Discrete theorem on 6 affine vertices

Five generic points in the plane determine a conic. Considering the plane
as an affine part of the projective plane, the complement of the conic has
two connected components. Let P be a plane convex n-gon; throughout this
section we assume that n> 6. As in the previous section, we introduce the
following definition.

Definition 2.5. Five consecutive vertices V;,..., V;+4 are said to be
extremal if V;_ i and Vi+5 lie on the same side of the conic through these
5 points (this does not exclude the case where V/_ i or Vi+5 belongs to the
conic).

If P is replaced by a smooth convex curve, and Vi,..., Vi+4 are infinitely
close points, we recover the definition of an affine vertex. Hence the following
theorem is a discrete version of the smooth theorem on 6 affine vertices.

THEOREM 2.6. Every plane convex polygon P has at least 6 extremal
quintuples of vertices.

Example 2.7. If P is a hexagon then the theorem holds tautologically
for the same reason as in Example 2.3.
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Remark 2.8. On interchanging sides and vertices, and replacing circumscribed

conics by inscribed ones, we arrive at a "dual" theorem. The latter is

equivalent to Theorem 2.6 via projective duality - cf. Remark 2.4.

2.3 Discrete Ghys theorem

A discrete object of study in this section is a pair of cyclically ordered

n-tuples X (jciand Y (yu...,yn) in RP1 with n > 4. We

choose an orientation of RP1 and assume that the cyclic ordering of each of
the two n -tuples is induced by this orientation.

Recall that an ordered quadruple of distinct points in RP1 determines a

number, the cross-ratio, which is a projective invariant. Choosing an affine

parameter such that the points are given by real numbers a < b < c < d, the

cross-ratio is

(c — a)(d — b)
(2.1) [a,b,c,d\

(b — a){d — c)

Definition 2.9. A triple of consecutive indices (i, i -h 1, i 4- 2) is said to
be extremal if the difference of cross-ratios

(2-2) [yj,yj+i,yj+2,yj+3]~[xj,xj+u

changes sign as j varies from i — 1 to i (this does not exclude the case where
either of the differences vanishes).

THEOREM 2.10. For every pair X, Y of n-tuples ofpoints as above, there

exist at least four extremal triples.

Example 2.11. If n 4 then the theorem holds for a very simple reason.
A cyclic permutation of four points induces the following transformation of
their cross-ratio:

[YI,x2,X3,X4]
(2.3)

[*1,*2,*3,*4] - 1
'

and this is an involution. Furthermore, if a > b > 1 then a/{a—I) < b/(b— 1).
Therefore, each triple of indices is extremal.

Let us interpret Theorem 2.10 in geometrical terms like Theorems 2.2 and
2.6. There exists a unique projective transformation that carries Xi,xi+i,jc/+2
into y/,y/+i,y/+2, respectively. The graph G of this transformation can be seen
as a curve in RP1 xRP1 ; the three points (xhyd, lie
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on this graph. An ordered pair of points (xj,xj+1) in oriented RP1 defines a

unique segment. An ordered pair of points ((x/,^), (x/+ i,»+i)) in RP1 x RP1

also defines a unique segment, namely the one whose projection on each
factor is a segment in RP1 as defined before. The triple (z,l + 1, i + 2) is
extremal if and only if the topological intersection index of the broken line
fe-iTi-i)? • • •, (x;+3,y;+3) with the graph G is zero. This fact can be checked
from (2.1) by a direct computation, which we omit.

Let us also comment on the relation between Definition 2.9 and the zeroes
of the Schwarzian derivative of a diffeomorphism of the projective line. Let

be four infinitely close points given in some affine coordinate, and let yt /(xi)
where / is a diffeomorphism of RP1. Then a direct computation using (2.1)
yields :

is the Schwarzian derivative of /. Thus, for e —> 0, Definition 2.9 corresponds
to the vanishing of the Schwarzian derivative.

Figure 2

xo 0, x\ £, *2 2e, X3 3e

[yo,y\,yi,yû - [xo,xi,x2,x3] e2S(f)(0) + 3)

where
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