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FINITE TYPE LINK-HOMOTOPY INVARIANTS

by Xiao-Song Lin*)

Abstract. An explicit polynomial in the linking numbers % and Milnor's triple
linking numbers p(rst) on six component links is shown to be a well-defined finite type

I link-homotopy invariant. This solves a problem raised by B. Mellor and D. Thurston.

An extension of our construction also produces a finite type link invariant which detects
1 the invertibility for some links.

The classification of links in 3-space up to link-homotopy [3] was published

ten years ago. Since then, the question of whether one could extract link-

homotopy invariants from this classification has not been addressed properly.
Recall that this classification starts with the classification of k component

string links up to link-homotopy by a finitely generated torsion free nilpotent

group H(k). Then link-homotopy classes are classified as orbits of this group
H(k) under the "nilpotent action" of conjugations and partial conjugations.
The group H(k) is of rank

so an element of H(k) can be described uniquely by that many integers.

These integers are Milnor's ^-numbers1) with distinct indices. By a link-
homotopy invariant polynomial, or simply a link-homotopy invariant, we mean
a polynomial in these fi -numbers which is invariant under the action of

*) Partially supported by the Overseas Youth Cooperation Research Fund of NSFC and a
grant from NSF.

Usually, they are called p-invariants. But the word "invariant" is clearly abused here, so
we decide to call them ^-numbers.

1. Introduction
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conjugations and partial conjugations. There are trivial examples of such link-
homotopy invariant polynomials coming from polynomials of linking numbers.
A link-homotopy invariant polynomial is non-trivial if it contains higher order
//-numbers.

The main result of this paper is that such a non-trivial link-homotopy
invariant polynomial exists when k > 6.

The abelianization of 7Y(k) is a free abelian group of rank (*). This is
where the classical linking numbers /#, 1 < i < j < k, fit in. The action
of conjugations and partial conjugations on this quotient of H(k) is trivial.
The next successive quotient of the lower central series of H(k) is a free
abelian group of rank (J), whose elements can be described by the collection of
Milnor's triple linking numbers {fiirst) ; 1 < r < s < t < k}. The conjugations
and partial conjugations act on this quotient by translations whose translation
vectors' coordinates are linear functions of the linking numbers Uj. Thus, if the
dimension of the subspace generated by these translation vectors is less than
(3) for generic values of the linking numbers, we may find a non-trivial vector
perpendicular to all these translation vectors. Furthermore, the coordinates of
this vector could be taken as polynomials in Uj. Then the projection of a vector
{fi(rst)} to this perpendicular vector will be invariant under conjugations and

partial conjugations. This is the general philosophy behind our construction
of link-homotopy invariant polynomials.

The theory of finite type invariants is a general framework for the study
of invariants of knots and links. See [1] for an introduction to this theory.
Intuitively speaking, multiple crossing switchings on links in 3-space give rise
to a very natural filtration on the set of all links and a link invariant is said to
be of finite type if it vanishes on all sufficiently deep strata of this filtration.

In a recent preprint [9], B. Mellor and D. Thurston have established the
existence of link-homotopy invariants of finite type which are not polynomials
of linking number when k > 9. Their proof is not constructive and therefore
it is not clear whether their link-homotopy invariants are polynomials of //-
numbers.

On the other hand, since //-numbers are of finite type for string links
([7], [2]), it is easy to see that our link-homotopy invariant polynomials are
of finite type for links. For k < 5, it is shown in [9] that the only finite
type link-homotopy invariants are polynomials in the linking numbers. So our
construction fits nicely with this work of Mellor and Thurston.

Recall that the only finite type knot concordance invariant is the Arf
invariant [10]. Since link concordance implies link-homotopy, our work (as
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well as the work of Mellor and Thurston, of course) shows the existence of
non-trivial finite type link concordance invariants.

To extend the applicability of our general philosophy slightly, we find that

the operation on the vector {ii(rst)} induced by reversing the orientation of
each component of a string link is to change it by a negative sign followed by a

translation whose translation vector's coordinates are quadratic polynomials in

lij. If the dimension of the subspace generated by this vector together with the

translation vectors of conjugations and partial conjugations is still less than (3)

for generic values of the linking numbers, and this is the case indeed, we can

construct a non-trivial link-homotopy invariant polynomial which is changed

by a sign when the orientation of each component of a link is reversed. We

say that such a link invariant detects the invertibility for links. Recall that the

reversion of the orientation of every component of a link does not change
the quantum invariant associated with an irreducible representation of a semi-

simple Lie algebra (see, for example, [8]). Thus our invariant is of finite type
but is not determined by quantum invariants. The existence of a finite type
knot invariant which detects the invertibility for knots is a major problem in
the theory of finite type invariants (see, for example, [8] and [4]). We believe
that finite type knot invariants can not detect the invertibility for knots.

It remains unclear whether we can have a complete set of link-homotopy
invariant polynomials which determines uniquely link-homotopy classes of
links. See [5] for an earlier attempt on this problem2). This problem could
probably be translated to the problem of understanding the sublattice generated
by the translation vectors of conjugations and partial conjugations. A better
understanding of this sublattice might also be useful in answering the following
question. If we let deg(Zy) 1 and deg (/j,(rst)) 2, the link-homotopy
invariant polynomial for k 6 we construct in Section 3, which detects the

invertibility for links, is a linear combination of 113,700 monomials of degree
22, homogeneous in both and fi(rst) and linear in ß(rst). Is there a shorter
link-homotopy invariant polynomial detecting the invertibility for links

2. Conjugation and partial conjugation

We first recall the classification of ordered, oriented links up to link-
homotopy given in [3]. We will follow the notations of [3].

2) See [6] for another approach to the similar problem for surgery equivalence of links.
Notice that both approaches attempted to reduce the indeterminacies of the ß-invariants.



318 X.-S. LIN

Let H(k) be the group of link-homotopy classes of ordered, oriented string

links with k components. The components of a string link will be ordered by

1,2,..., k. Recall that a string link is a concordance of k marked points inside

of the 2-disk D2 to itself in D2 x [0,1], such that it has no closed component.
Two string links are link-homotopic if they are homotopic in such a way
that at any moment of the homotopy, different components remain disjoint
(but they are allowed to have self-intersections). Two string links can be put

together to form a new string link and this gives rise to a group structure on

the set of all link-homotopy classes of string links. This is the group H(k).
A pure braid is by definition a string link of the same number of

components. So we have a natural map from the pure braid group P(k) of
k components to H(k). It is shown in [3] that this natural map P(k) —* H(k)
is onto.

Deletion of the ith component of the string link gives rise to a group

homomorphism dt : H(k) —» TL(k — 1). If F(k) denotes the free group of rank

k generated by xux2,... 3xk, the reduced free group RF(k) is the quotient of
F(k) by adding relations \xi,xf] 1 for all i and all g G F(k).

LEMMA 2.1. There is a split short exact sequence of groups

(1) 1 —» RF(k - 1) —* H(k-L- 1) —> 1

where RF(k— 1) is the reduced free group generated by x\ t «,.,Xi-i, xi+\,...,

Notice that the split exact sequence (1) depends on the deleted component

so that there are k such split exact sequences altogether. A split exact sequence

determines a semi-direct product decomposition

H(k) H(k - 1) x RF(k - 1).

Conjugation in the group 7~L(k) is defined as usual: A conjugation of

a G H(k) by ß G H(k) is the element ßaß~l G H(k). A partial conjugation

of a G Hik) is an element of the form Ohgh~]where we write g 6g

according to a decomposition H(k) H(k— 1) x RF(k— 1), for 0 e Hik — 1)

and g G RF(k - 1), and for an arbitrary h G RF(k - 1).

To form the closure of a string link g G H(k), we may think of it as

a pure braid in P(k) and its closure will be the usual braid closure. The

closure of g G H(k) is an ordered, oriented link of k components. It is not

hard to see that every link-homotopy class of ordered, oriented links with k

components can be realized as the closure of an element in H(k), and thus

the closure of a pure braid in Pik). One of the main results of [3] is the

following classification theorem.
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THEOREM 2.2. Let a, a' G H(k). Then the closures of a and a' are

link-homotopic as ordered, oriented links if and only if there is a sequence

a (jo, or,..., crn a' of elements of Tt{k) such that aj+i is either a

conjugation or a partial conjugation of crj.

For a group G, we will denote by Gn the nth term of the lower central

series of G, i.e. G\ G and Gn+1 [Gn,G], the normal subgroup of
G generated by elements of the form [g,h\ ghg~lh~l for all g G Gn

and h e G. A group G is nilpotent of class n if G„+\ 1 but Gn 1.

We summarize some known facts about the group structures of Ti{k) in the

following lemma.

LEMMA 2.3. 1) TL{k) is torsion free and nilpotent of class k— 1.

!:j 2) Corresponding to a decomposition TL{k) — Ti(k — 1) ix RF(k — 1), we

I have

I H(k)n H(k - \)n ix RF{k - l)n

I 3) FC(k)n-\/FC(k)n is a free abelian group of rank (n — 2)! Q

p For <j G 7Y(k), its image in H(k)/H(k)3 can be described by Q + (3)
I integers. These integers are linking numbers Zy, for 1 < i < j < k, and

j Milnor's triple linking numbers p(rst), for 1 < r < s < t < k. We want
I to have them defined precisely and understand how they change when a is
|j changed by a conjugation or a partial conjugation.
Ï

1 r s k

Figure 1

The pure braid rrs

We will denote by r„ rs,, for 1 < the pure braid depicted
in Figure 1. Let a G H(k)/H(k)3.For 1 < after deleting
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all components other than the r, s, t-th components, a can be written in the

following normal form

(2) a t%t%rj [rrt,

where a lrs, ß lrt, 7 lst. By definition, we have ö ß(rst) for
aeH(k).

LEMMA 2.4. In 7i(k)/TL(k)3, if r', s', t' is a permutation of r,s,t and e

is the sign of the permutation, then

[Tr't',Ts't/] \Trt,Tst]6

Furthermore, we have

D Trt,Tst]TstV

This lemma is useful in the following calculation and its proof is

straightforward.
To understand how p(rst) changes under the conjugation, we only need

to calculate the conjugation of cr G H(k)/H(k)3 under the normal form (2)
by Tm rrtl rst. This calculation is straightforward:

TrsOT'1 TrsT?sT?tT2[Tr„Tst\5T~l

T?sT%T2[Tny Trtf[Trs, Tstf

TnTnTst[Trt,Tstf+ß~'r;

TrtO-T"1 TrtT?sTßtT2[Tr„Tst\5T~l

T?sTrtT7t[T~rt, TstViTn, Tstf

r^TZiTrt, riï]<î~a+7 ;

T^T~l =%tT?sT%T?t[Trt,Tst]ST-1

T®TrfrJ[rsf, rra]Q[rä„

— TaT^T1\T T~ 1

rs
1 rt Tst Urt) Tst J

We summarize the calculation into the following lemma.

LEMMA 2.5. The change of ß(rst) under a conjugation is given by

Conjugation by rrs : ß{rst) —» pJ{rst) + lrt — lst ;

Conjugation by rrt : p(rst) p(rst) — lrs + lst ;

Conjugation by rst : pJ{rst) —> p(rst) + lrs — lrt.



FINITE TYPE LINK-HOMOTOPY INVARIANTS 321

Furthermore, fi(rst) will not change under a conjugation by Tij where {ij}
and {r, 5, t} have at most one element in common.

The calculation of partial conjugations is slightly more complicated. We

will start with partial conjugations by rrt and rst. These two operations are
denoted by tr and ts, respectively. For a G 7ï(k)/H(k)3 under the normal
form (2), we have:

a -^T?sTrtT%T?t[Trt,Tst]ST~l

rraarrfrJ[Trt,rJ'5+7;

° -^T%TstT%T?t [Trt,Ts,]ST-1

TrsaT%TZ[Trt,Tst]S~P.
To calculate partial conjugations by rrs and rts, which are denoted by sr

and sr, respectively, we need to rewrite a as follows :

a Trt, Tstf rftT%7"J [rrs, Tts]~5~aß

Then, we have:

a Trerr"[rra,
TßtT?sT?s[Trs

T?sT%T?,[Tr„Tst]Ô~'1 ;

a -^T^TtsT^ [rra, Tts]~5~aßT~l

— [t q~ 1 ^ &~ 1 rt ' rs
1 ts L'rjj 'ts]

T^TßtTZ[Tr„

Similarly, to calculate partial conjugations rs and F, we first rewrite a :

1

rs
1 rt 1 st I' rt-> I st] 'st 'sr 'tr Usr 5 ^tr J

Then, we have

a r >r7r tu Gt ' sr' sr'tr l'srj 'tri Tgr

T?tT«Tß[Tsr,Tlr]0

T?sTßT2[Trt,Ts

a [Tsr, T

T2T*Tß{Tsr,Ttr}5~a~<+ß^a

— T<x ß J r lö-a' rs ' rt ' st I' rt-> ' st]

We summarize the previous calculation into the following lemma.



322 X.-S. LIN

LEMMA 2.6. The change of p(rst) under a partial conjugation is given
by

tr : p(rst) -> p(rst) + lst ;

ts : p(rst) —> p(rst) - lrt ;

sr : p(rst) pirst) lst ;

s p{rst) * p(rst) -j- /rj. ;

r* : - p(rst) + lrt ;

rL p(rst) p(rst) - lrs.

Furthermore, a partial conjugation by i-7 vW/Z not change p(rst) if {ij} and
{r, s, t\ have at most one element in common.

For a given string link a G H(k), we will think of the whole collection
{p(rst) ; 1 <r<s<t<k} as an element in ZÜ. Then the conjugations and
partial conjugations act on Z@ by translations. We will abuse the notation
by using the same symbol to denote both a translation operation and the
corresponding translation vector. Thus, a translation operation T: V — V on
a vector space V is given by T(v) v + T, for all v G V and a fixed T G V.
If T\ and T2 are two translations, we have

(Ti - T2)(v) vFT1FT2, for all v G V

The following two theorems follow directly from Lemmas 2.5 and 2.6.

THEOREM 2.7. The translation operation on Z© given by the conjugation
of Ty is the same as the composition of the translation operations given by
the partial conjugations i' and j1, i.e.itis equal to + j'.

THEOREM 2.8. The translation operations P satisfy the following rela-
tions :

£j'=°, yziijij=°

for all i 1,2,...,/:.

String links are oriented in the sense that each component is given an
prientation from the bottom to the top. See Figure 1. Reversing the orientation
on each component of a string link defines a bijection

a H(k) H(k).
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This bijection is an anti-homomorphism: g\G2 This bijection induces

an operation on Z©.

THEOREM 2.9. The operation on Z© induced by reversing the orientation
of each component ofa string link is to change each p<(rst) to —p,(rst) followed
by the translation operation

ß(rst) > p>(rst) lrs lrt -f lrs lst lri lst.

Proof Consider the normal form (2) of a G TL(k)/TL{k)3 in the r,s,t-th
components. The normal form for cr is obtained as follows :

ä [Trt,

T?sT%T?t[Trt,Tst7-/37
Thus the operation on Z® induced by cr i—> a is given by

p(rst) > p(rst) lrs lrj lrs lst Ilst. Q

3. Construction of the invariant

By Theorems 2.2 and 2.7, we shall look for polynomials in hj and p(rsf)
invariant under the translation operations on {p(rst)} G Z© induced by
partial conjugations. There are k(k — 1) partial conjugations altogether and
their induced translations subject to 2k linear equations given in Theorem 2.8.
If these equations are linearly independent for generic values of {///}, the
sublattice of Z© generated by the translation vectors of the partial conjugations
will be of dimension no larger than k(k - 1) - 2k k2 - 3k.

LEMMA 3.1. For k > 3, the 2k equations in Theorem 2.8 are linearly
independent for generic values of {/(/}.

Proof We write the two sets of equations in Theorem 2.8 as follows :

V + 2l + • • • -f j* -f • • • + k* 0, j f i\
hi1 + fei2 + • • • + iy+ • • • + fei* 0, jV

for each i= 1,2
For generic values of {/,,}, using the first - 1 equations from the first

set of k equations, we can solve for k\k2,,,. .k^1. Similarly, we can solve
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for I*, 2*,..., (k — 1)* from the first k — 1 equations of the second set of
k equations. The remaining vectors P, ij k, have to satisfy another two
equations obtained from the last equations in those two sets of k equations,
respectively, by substituting k' and with their solutions in terms of P
f°r ij k- It it then easy to check that these two equations are linearly
independent when k > 3.

Lemma 3.2. For k 4,5, we have (*) k2 - 3k. For k > 6, we have

© >k2-3k.

Proof. We have

(3) ~ ^ ~3k) \^ ~ 9k +20) ~4)(k ~5) • D

THEOREM 3.3. For k > 6, there exists a polynomial in ltj and p,(rst) which
is a link-homotopy invariant of ordered, oriented links with k components.
This link-homotopy invariant is of finite type.

Proof. In z(a), let V be the sublattice generated by the translation vectors
of partial conjugations. Then we have

dim(P) < k2 - 3k < Q

Let Q e Z(a) be a non-zero vector perpendicular to V. We can choose
such an Fi so that its coordinates are polynomials in {/^} and the inner
product L • £2 is identically zero. This can be achieved by considering generic
values of {%} first and solving a system of homogeneous equations (with
more equations than unknowns) whose coefficients are polynomials in hj3).
Then since P • Q 0 for generic values of {/^-}, it has to be zero identically.
Let p, {p(rst)} G ZÜ. The inner product p • Q is invariant under the
translations by vectors in V. This is a desired link-homotopy invariant of
ordered, oriented links since

(/i L) ' Fl p • Fl

for all ij 1,2,... ,k.
s

The fact that the invariant p-Fl is of finite type is a direct consequence of
the fact that the linking numbers and the triple linking numbers are all finite

3) This will be made explicit in the example following this proof.
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type invariants of string links ([7], [2]). If we have a singular link, we may

put it into the form of the closure of a single string link. Since polynomials of
finite type invariants are still of finite type, /x • Q vanishes on singular string

links with a sufficiently large number of double points. This implies that it is

a finite type link invariant.

We now consider in some detail the case k 6. Let us order /x(rst),
1 < r < s < t < 6 in lexicographic order. So

/X 04123), Hi124), /x( 125), /x(126), ß( 134), /x(135), /x( 136), /x(145), /x(146), m(156),

/x(234), /x(235), /x(236), /x(245), /x(246), /i(256), /x(345), /i(346), jx(356), ju(456)).

Then the vectors of the translation operations l2, l3, l4, l5, l6, 21, 23, 24,

25, 26, 31, 32, 34, 35, 36, 41, 42, 43, 45, 46, 51, 52, 53, 54, 56, 61, 62,

63, 64, 65 are the row vectors of the following 30 x 20 matrix, from top to
bottom respectively :

*13 l\4 *is *16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

—hi 0 0 0 tl4 hs *16 0 0 0 0 0 0 0 0 0 0 0 0 0

0 hi 0 0 —hs 0 0 *15 *16 0 0 0 0 0 0 0 0 0 0 0

0 0 —'hi 0 0 — *13 0 — *14 0 *16 0 0 0 0 0 0 0 0 0 0

0 0 0 ~h2 0 0 — *13 0 — *14 — *15 0 0 0 0 0 0 0 0 0 0

— *23 — *24 — *25 -*26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

hi 0 0 0 0 0 0 0 0 0 *24 *25 *26 0 0 0 0 0 0 0

0 hi 0 0 0 0 0 0 0 0 -*23 0 0 *25 *26 0 0 0 0 0

0 0 hi 0 0 0 0 0 0 0 0 -*23 0 — *24 0 *26 0 0 0 0

0 0 0 hi 0 0 0 0 0 0 0 0 — *23 0 — *24 — *25 0 0 0 0

*23 0 0 0 —*34 — *35 -*36 0 0 0 0 0 0 0 0 0 0 0 0 0

*13 0 0 0 0 0 0 0 0 0 — *34 -*35 -*36 0 0 0 0 0 0 0

0 0 0 0 *13 0 0 0 0 0 *23 0 0 0 0 0 *35 *36 0 0

0 0 0 0 0 *13 0 0 0 0 0 *23 0 0 0 0 — *34 0 *36 0

0 0 0 0 0 0 *13 0 0 0 0 0 *23 0 0 0 0 — *34 — *35 0

0 *24 0 0 *34 0 0 — *45 -*46 0 0 0 0 0 0 0 0 0 0 0

0 — l\4 0 0 0 0 0 0 0 0 *34 0 0 — *45 -*46 0 0 0 0 0

0 0 0 0 —/] 4 0 0 0 0 0 — *24 0 0 0 0 0 — *45 — *46 0 0

0 0 0 0 0 0 0 *14 0 0 0 0 0 *24 0 0 *34 0 0 *46

0 0 0 0 0 0 0 0 *14 0 0 0 0 0 *24 0 0 *34 0 -*45
0 0 *25 0 0 *35 0 *45 0 — *56 0 0 0 0 0 0 0 0 0 0

0 0 ~ll5 0 0 0 0 0 0 0 0 *35 0 *45 0 — *56 0 0 0 0

0 0 0 0 0 -*15 0 0 0 0 0 -*25 0 0 0 0 *45 0 — *56 0

0 0 0 0 0 0 0 -*15 0 0 0 0 0 -*25 0 0 — *35 0 0 -*56
0 0 0 0 0 0 0 0 0 *15 0 0 0 0 0 *25 0 0 *35 *45

0 0 0 l26 0 0 *36 0 *46 *56 0 0 0 0 0 0 0 0 0 0

0 0 0 —he 0 0 0 0 0 0 0 0 *36 0 *46 *56 0 0 0 0

0 0 0 0 0 0 — *16 0 0 0 0 0 -*26 0 0 0 0 *46 *56 0
0 0 0 0 0 0 0 0 — *16 0 0 0 0 0 -*26 0 0 -*36 0 *56
0 0 0 0 0 0 0 0 0 -*16 0 0 0 0 0 *26 0 0 -*36 — *46
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We shall pick out the 18 rows of this matrix corresponding to the translation
operations of l2, l3, l4, l5, 21, 23, 24, 25, 31, 32, 34, 35, 4\ 42, 43?
4 ,5 52, respectively. Calculation using Mathematica® shows that these 18
vectors are linearly independent generically.

Consider now the operation of reversing the orientation. The vector
R {R(rst)} e Z20 of the translation operation in Theorem 2.9 is given
by

R(rst) lrs lri -)- lrs lst Jrt t

One can verify that the vector R and the previous 18 vectors are linearly
independent. Let M. be the 19 x 20 matrix formed by these 19 vectors. Let
M(,) be the 19 x 19 matrix obtained from M by deleting the Ith column
from M, i1,2,... ,20. Let

Q; (-l/-1 det (Ad®)

and f2 (O1,£22,...,£220).

Theorem 3.4. p• O is afinite type invariant of ordered,
oriented links with 6 components. When the orientation of every component
is reversed, this invariant is changed only by a sign.

Proof. Using the fact that the rows of the cofactor matrix A* of a
given matrix A are perpendicular to different rows of A, we see that Q. is
perpendicular to all the vectors of translation operation induced by partial
conjugations as well as the vector R. Certainly, Q ^ 0. So is a non-
trivial link-homotopy invariant of ordered, oriented links with 6 components. It
is of finite type since it is a polynomial in ly and Under the reversion
of orientation, p changes to -p + R. Since Q 0, the invariant is
only changed by a sign under the reversion of orientation.

To finish, let us furnish some data obtained using Mathematica. Let
deg (ly) 1, then Q, is a homogeneous polynomial of degree 20 in ly
Let Lt be the number of monomials in £2, the sequence {Lh L2,... ,L20} is
given as follows:

{5531,5555,5555,5531,5424,5769,5802,5734,5753,5432,

5432,5753,5802,5734,5769,5424,5928,5922,5922,5928}

Thus p-Q.islinear and homogeneous in p(rst) and has 113,700 monomials.
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