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well as the work of Mellor and Thurston, of course) shows the existence of
non-trivial finite type link concordance invariants.

To extend the applicability of our general philosophy slightly, we find that

the operation on the vector {ii(rst)} induced by reversing the orientation of
each component of a string link is to change it by a negative sign followed by a

translation whose translation vector's coordinates are quadratic polynomials in

lij. If the dimension of the subspace generated by this vector together with the

translation vectors of conjugations and partial conjugations is still less than (3)

for generic values of the linking numbers, and this is the case indeed, we can

construct a non-trivial link-homotopy invariant polynomial which is changed

by a sign when the orientation of each component of a link is reversed. We

say that such a link invariant detects the invertibility for links. Recall that the

reversion of the orientation of every component of a link does not change
the quantum invariant associated with an irreducible representation of a semi-

simple Lie algebra (see, for example, [8]). Thus our invariant is of finite type
but is not determined by quantum invariants. The existence of a finite type
knot invariant which detects the invertibility for knots is a major problem in
the theory of finite type invariants (see, for example, [8] and [4]). We believe
that finite type knot invariants can not detect the invertibility for knots.

It remains unclear whether we can have a complete set of link-homotopy
invariant polynomials which determines uniquely link-homotopy classes of
links. See [5] for an earlier attempt on this problem2). This problem could
probably be translated to the problem of understanding the sublattice generated
by the translation vectors of conjugations and partial conjugations. A better
understanding of this sublattice might also be useful in answering the following
question. If we let deg(Zy) 1 and deg (/j,(rst)) 2, the link-homotopy
invariant polynomial for k 6 we construct in Section 3, which detects the

invertibility for links, is a linear combination of 113,700 monomials of degree
22, homogeneous in both and fi(rst) and linear in ß(rst). Is there a shorter
link-homotopy invariant polynomial detecting the invertibility for links

2. Conjugation and partial conjugation

We first recall the classification of ordered, oriented links up to link-
homotopy given in [3]. We will follow the notations of [3].

2) See [6] for another approach to the similar problem for surgery equivalence of links.
Notice that both approaches attempted to reduce the indeterminacies of the ß-invariants.
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Let H(k) be the group of link-homotopy classes of ordered, oriented string

links with k components. The components of a string link will be ordered by

1,2,..., k. Recall that a string link is a concordance of k marked points inside

of the 2-disk D2 to itself in D2 x [0,1], such that it has no closed component.
Two string links are link-homotopic if they are homotopic in such a way
that at any moment of the homotopy, different components remain disjoint
(but they are allowed to have self-intersections). Two string links can be put

together to form a new string link and this gives rise to a group structure on

the set of all link-homotopy classes of string links. This is the group H(k).
A pure braid is by definition a string link of the same number of

components. So we have a natural map from the pure braid group P(k) of
k components to H(k). It is shown in [3] that this natural map P(k) —* H(k)
is onto.

Deletion of the ith component of the string link gives rise to a group

homomorphism dt : H(k) —» TL(k — 1). If F(k) denotes the free group of rank

k generated by xux2,... 3xk, the reduced free group RF(k) is the quotient of
F(k) by adding relations \xi,xf] 1 for all i and all g G F(k).

LEMMA 2.1. There is a split short exact sequence of groups

(1) 1 —» RF(k - 1) —* H(k-L- 1) —> 1

where RF(k— 1) is the reduced free group generated by x\ t «,.,Xi-i, xi+\,...,

Notice that the split exact sequence (1) depends on the deleted component

so that there are k such split exact sequences altogether. A split exact sequence

determines a semi-direct product decomposition

H(k) H(k - 1) x RF(k - 1).

Conjugation in the group 7~L(k) is defined as usual: A conjugation of

a G H(k) by ß G H(k) is the element ßaß~l G H(k). A partial conjugation

of a G Hik) is an element of the form Ohgh~]where we write g 6g

according to a decomposition H(k) H(k— 1) x RF(k— 1), for 0 e Hik — 1)

and g G RF(k - 1), and for an arbitrary h G RF(k - 1).

To form the closure of a string link g G H(k), we may think of it as

a pure braid in P(k) and its closure will be the usual braid closure. The

closure of g G H(k) is an ordered, oriented link of k components. It is not

hard to see that every link-homotopy class of ordered, oriented links with k

components can be realized as the closure of an element in H(k), and thus

the closure of a pure braid in Pik). One of the main results of [3] is the

following classification theorem.
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THEOREM 2.2. Let a, a' G H(k). Then the closures of a and a' are

link-homotopic as ordered, oriented links if and only if there is a sequence

a (jo, or,..., crn a' of elements of Tt{k) such that aj+i is either a

conjugation or a partial conjugation of crj.

For a group G, we will denote by Gn the nth term of the lower central

series of G, i.e. G\ G and Gn+1 [Gn,G], the normal subgroup of
G generated by elements of the form [g,h\ ghg~lh~l for all g G Gn

and h e G. A group G is nilpotent of class n if G„+\ 1 but Gn 1.

We summarize some known facts about the group structures of Ti{k) in the

following lemma.

LEMMA 2.3. 1) TL{k) is torsion free and nilpotent of class k— 1.

!:j 2) Corresponding to a decomposition TL{k) — Ti(k — 1) ix RF(k — 1), we

I have

I H(k)n H(k - \)n ix RF{k - l)n

I 3) FC(k)n-\/FC(k)n is a free abelian group of rank (n — 2)! Q

p For <j G 7Y(k), its image in H(k)/H(k)3 can be described by Q + (3)
I integers. These integers are linking numbers Zy, for 1 < i < j < k, and

j Milnor's triple linking numbers p(rst), for 1 < r < s < t < k. We want
I to have them defined precisely and understand how they change when a is
|j changed by a conjugation or a partial conjugation.
Ï

1 r s k

Figure 1

The pure braid rrs

We will denote by r„ rs,, for 1 < the pure braid depicted
in Figure 1. Let a G H(k)/H(k)3.For 1 < after deleting
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all components other than the r, s, t-th components, a can be written in the

following normal form

(2) a t%t%rj [rrt,

where a lrs, ß lrt, 7 lst. By definition, we have ö ß(rst) for
aeH(k).

LEMMA 2.4. In 7i(k)/TL(k)3, if r', s', t' is a permutation of r,s,t and e

is the sign of the permutation, then

[Tr't',Ts't/] \Trt,Tst]6

Furthermore, we have

D Trt,Tst]TstV

This lemma is useful in the following calculation and its proof is

straightforward.
To understand how p(rst) changes under the conjugation, we only need

to calculate the conjugation of cr G H(k)/H(k)3 under the normal form (2)
by Tm rrtl rst. This calculation is straightforward:

TrsOT'1 TrsT?sT?tT2[Tr„Tst\5T~l

T?sT%T2[Tny Trtf[Trs, Tstf

TnTnTst[Trt,Tstf+ß~'r;

TrtO-T"1 TrtT?sTßtT2[Tr„Tst\5T~l

T?sTrtT7t[T~rt, TstViTn, Tstf

r^TZiTrt, riï]<î~a+7 ;

T^T~l =%tT?sT%T?t[Trt,Tst]ST-1

T®TrfrJ[rsf, rra]Q[rä„

— TaT^T1\T T~ 1

rs
1 rt Tst Urt) Tst J

We summarize the calculation into the following lemma.

LEMMA 2.5. The change of ß(rst) under a conjugation is given by

Conjugation by rrs : ß{rst) —» pJ{rst) + lrt — lst ;

Conjugation by rrt : p(rst) p(rst) — lrs + lst ;

Conjugation by rst : pJ{rst) —> p(rst) + lrs — lrt.
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Furthermore, fi(rst) will not change under a conjugation by Tij where {ij}
and {r, 5, t} have at most one element in common.

The calculation of partial conjugations is slightly more complicated. We

will start with partial conjugations by rrt and rst. These two operations are
denoted by tr and ts, respectively. For a G 7ï(k)/H(k)3 under the normal
form (2), we have:

a -^T?sTrtT%T?t[Trt,Tst]ST~l

rraarrfrJ[Trt,rJ'5+7;

° -^T%TstT%T?t [Trt,Ts,]ST-1

TrsaT%TZ[Trt,Tst]S~P.
To calculate partial conjugations by rrs and rts, which are denoted by sr

and sr, respectively, we need to rewrite a as follows :

a Trt, Tstf rftT%7"J [rrs, Tts]~5~aß

Then, we have:

a Trerr"[rra,
TßtT?sT?s[Trs

T?sT%T?,[Tr„Tst]Ô~'1 ;

a -^T^TtsT^ [rra, Tts]~5~aßT~l

— [t q~ 1 ^ &~ 1 rt ' rs
1 ts L'rjj 'ts]

T^TßtTZ[Tr„

Similarly, to calculate partial conjugations rs and F, we first rewrite a :

1

rs
1 rt 1 st I' rt-> I st] 'st 'sr 'tr Usr 5 ^tr J

Then, we have

a r >r7r tu Gt ' sr' sr'tr l'srj 'tri Tgr

T?tT«Tß[Tsr,Tlr]0

T?sTßT2[Trt,Ts

a [Tsr, T

T2T*Tß{Tsr,Ttr}5~a~<+ß^a

— T<x ß J r lö-a' rs ' rt ' st I' rt-> ' st]

We summarize the previous calculation into the following lemma.
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LEMMA 2.6. The change of p(rst) under a partial conjugation is given
by

tr : p(rst) -> p(rst) + lst ;

ts : p(rst) —> p(rst) - lrt ;

sr : p(rst) pirst) lst ;

s p{rst) * p(rst) -j- /rj. ;

r* : - p(rst) + lrt ;

rL p(rst) p(rst) - lrs.

Furthermore, a partial conjugation by i-7 vW/Z not change p(rst) if {ij} and
{r, s, t\ have at most one element in common.

For a given string link a G H(k), we will think of the whole collection
{p(rst) ; 1 <r<s<t<k} as an element in ZÜ. Then the conjugations and
partial conjugations act on Z@ by translations. We will abuse the notation
by using the same symbol to denote both a translation operation and the
corresponding translation vector. Thus, a translation operation T: V — V on
a vector space V is given by T(v) v + T, for all v G V and a fixed T G V.
If T\ and T2 are two translations, we have

(Ti - T2)(v) vFT1FT2, for all v G V

The following two theorems follow directly from Lemmas 2.5 and 2.6.

THEOREM 2.7. The translation operation on Z© given by the conjugation
of Ty is the same as the composition of the translation operations given by
the partial conjugations i' and j1, i.e.itis equal to + j'.

THEOREM 2.8. The translation operations P satisfy the following rela-
tions :

£j'=°, yziijij=°

for all i 1,2,...,/:.

String links are oriented in the sense that each component is given an
prientation from the bottom to the top. See Figure 1. Reversing the orientation
on each component of a string link defines a bijection

a H(k) H(k).
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This bijection is an anti-homomorphism: g\G2 This bijection induces

an operation on Z©.

THEOREM 2.9. The operation on Z© induced by reversing the orientation
of each component ofa string link is to change each p<(rst) to —p,(rst) followed
by the translation operation

ß(rst) > p>(rst) lrs lrt -f lrs lst lri lst.

Proof Consider the normal form (2) of a G TL(k)/TL{k)3 in the r,s,t-th
components. The normal form for cr is obtained as follows :

ä [Trt,

T?sT%T?t[Trt,Tst7-/37
Thus the operation on Z® induced by cr i—> a is given by

p(rst) > p(rst) lrs lrj lrs lst Ilst. Q

3. Construction of the invariant

By Theorems 2.2 and 2.7, we shall look for polynomials in hj and p(rsf)
invariant under the translation operations on {p(rst)} G Z© induced by
partial conjugations. There are k(k — 1) partial conjugations altogether and
their induced translations subject to 2k linear equations given in Theorem 2.8.
If these equations are linearly independent for generic values of {///}, the
sublattice of Z© generated by the translation vectors of the partial conjugations
will be of dimension no larger than k(k - 1) - 2k k2 - 3k.

LEMMA 3.1. For k > 3, the 2k equations in Theorem 2.8 are linearly
independent for generic values of {/(/}.

Proof We write the two sets of equations in Theorem 2.8 as follows :

V + 2l + • • • -f j* -f • • • + k* 0, j f i\
hi1 + fei2 + • • • + iy+ • • • + fei* 0, jV

for each i= 1,2
For generic values of {/,,}, using the first - 1 equations from the first

set of k equations, we can solve for k\k2,,,. .k^1. Similarly, we can solve
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