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68 U. HAMENSTÄDT

THEOREM B. For every k > 2 and g |(k + 1) the Teichmüller space
Tgß can be parametrized by the length functions of 6g + 3 free homotopy
classes contained in the orbit of a fixed class under a maximal finite subgroup
G of Map(g, 0). The group G is a semidirect product of a cyclic group of
order 2g + 1 and a cyclic group of order 3.

We refer to [S2] for a discussion of other interesting parametrizations
of Tg,0-

The structure of this note is as follows. In Section 2 we look at
simple triangle surfaces with additional symmetries. In Section 3 we give
a combinatorial description of a family of curves which contains the systoles
of every simple triangle surface. Length estimates in Section 4 lead to a

complete description of the systoles of a simple triangle surface. This is used
in Section 5 to show our theorems.

As a notational convention, we number the vertices of a fundamental
2p -gon Q counter-clockwise in consecutive order and we number and orient
the edges of Q in such a way that the edge i as an oriented arc joins the
vertex i— 1 to the vertex i. Moreover we write simply Tg for the Teichmüller
space of marked hyperbolic structures on a closed surface of genus g.

2. Basic properties of simple triangle surfaces

Let g >2 and let p 2g + 1. There is up to isometry a unique 2/7-gon
Q in the hyperbolic plane H2 with geodesic sides of equal length and with
angles 2ir/p. In the introduction we called Q a fundamental 2p-gon. The
center of Q is the unique point z e Q which has the same distance to each
of the vertices. A fundamental 2/7-gon admits a cyclic group F of isometries
whose elements rotate £1 about the center with a rotation angle which is a
multiple of 2ir/p. We view F as a cyclic group of isometries of the whole
hyperbolic plane H2.

We call a closed hyperbolic surface S of genus g a simple triangle surface
if S H2/G where G is a discrete torsion free group G c PSL(2, R) of
isometries of H2 which is normalized by the group F and which admits Q
as a fundamental polygon (see [M] for basic informations on fundamental
polygons). The group G then acts as a group of side pairing transformations
for the polygon Q. This means that for each side a of Q there is an isometry

G G which maps a to a second side T'(a) f=- a of Q in such a way that
^(Q)nQ %.
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Our first observation is that simple triangle surfaces exist for every

genus g >2.

LEMMA 2.1. For every g > 2 there is a simple triangle surface of genus g.

Proof Let p > 5 be an odd number and let Q be a fundamental 2p-gon
with center 0 G H2. We have to show that there is a discrete subgroup G of
PSL(2,R) which is normalized by F and which admits Q as a fundamental

polygon.
Choose a number k G {2,1} and define a family {T^, • •.,

of isometries of H2 by requiring that T'y maps the (oriented) edge with odd

number 2j+l orientation reversing onto the (oriented) edge 2]-\-2k in such

a way that T^Q) H Q is just the edge 2/ -f 2k. Then necessarily the vertex

2j is mapped to the vertex 2j + 2k, and the vertex 2y+ 1 is mapped to the

vertex 2j + 2k — 1. We claim that these isometries {T'i,..., generate a

discrete subgroup of PSL(2, R) with fundamental domain Q if and only if k
and k — 1 are prime to /?.

To see this let G be the subgroup of PSL(2, R) generated by xFll...,
and assume that G is discrete and torsion free, with fundamental polygon Q.
By the choice of *Fi,..., the G-orbit of an even (or odd) vertex of Q
intersects Q only in the set of even (or odd) vertices. Different such vertex
cycles project to different points on the surface S H2/G. If m > 2 is the
number of points in the vertex cycle of the vertex a, then a neighborhood
of the projection a of a to S consists of 2m equilateral hyperbolic triangles
with angle n/p which contain a as one of their vertices. Since S is a smooth
hyperbolic surface, the angles at à of these triangles must add up to 27t.
This means that there are precisely 2 vertex cycles for the action of G, each
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containing only even or only odd vertices. By the definition of G this is the

case if and only if the number k E {2,1} is prime to p and k— 1 is

prime to p as well. Such a group G is then normalized by the group T of
rotations of Q with rotation angle a multiple of 2tt.

The same argument also shows that for k E {2,... ,p — 1} which is prime

to p and such that k — 1 is prime to p as well the group G induces a simple

triangle surface of genus g. Since p 2g + 1 is odd we can always choose

k 2 to obtain an example.

In the above proof we observed that we obtain a simple triangle surface

from a fundamental 2p-gon Q by identifying the edge 1 with the edge 2k

for some k E {2,1} if and only if k and k - 1 are prime to p.
We denote by S(p\k) the surface obtained in this way. For fixed p > 5

this defines a finite non-empty collection of simple triangle surfaces of genus

\p- 1 indexed by the set of all numbers k E {2,1} which are prime

to p and such that A:— 1 is prime to p as well. However these surfaces are not

necessarily distinct as hyperbolic surfaces. For example, via exchanging the

roles of the even and odd vertices of our fundamental 2/?-gon £1 we observe

that the surface S(p;k) is isometric to the surface S(p\p — k+ I). Thus we

may restrict our attention to the case that k < \{p + 1). In the sequel we

sometimes identify the surfaces S(p;k) and S(p\p — k+ 1) without further

comment.

Let again T be the group of rotations of Q which descends to a group of
isometries on a simple triangle surface S of genus g. The natural T-invariant

triangulation of £1 into 2p equilateral triangles with angle ix/p projects to the

F-invariant canonical triangulation whose 3 vertices 0 ,A,Z? are just the fixed

points for the action of T. The quotient S/T of S under T is a topological

2-sphere. The hyperbolic metric on S projects to a hyperbolic metric on S/T

with 3 singular points Â,B,Ô which are the projections of the vertices A,B,0
of the canonical triangulation of S. With this metric, S/T is isometric to two

equilateral hyperbolic triangles with angle ir/p glued at their boundaries. This

observation is used in the proof of the following.

Lemma 2.2.

1) Let p > 5 be an odd number and let k, m E {2,— 1} be numbers

which are prime to p and such that k - l,m - 1 are prime to p as well If
either (k - l)m+ 1 0 mod p or (m - l)fc+ 1 0 mod p then the surfaces

S(p;k) and S(p;m) are isometric.
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2) A simple triangle surface S with basic group F of isometries admits a
nontrivial group E <f_ F of orientation preserving isometries which normalizes

r if and only if one of the following holds.

i) S S(p; k) for some k > 2 and a divisor p > k + I of k(k — 1) + 1.

The group X is then cyclic of order 3.

ii) S S(p; 2) and the group X is cyclic of order 2 and generated by a
hyperelliptic involution.

Proof. Let p > 5 and let k < p — 1 be such that k — 1 and k are prime
to p. Let £1 be a fundamental 2p-gon and let 0,A,Z? be the vertices of the
canonical triangulation of S. We assume that 0 is the projection of the center
of Q and A is the projection of the odd vertices of the boundary of Q.

As in the introduction we number the 2p edges of Q in counterclockwise
order in such a way that the edge i is adjacent to the vertices i— 1 and i. Let
Tt C S be the projection of the triangle in Q with one vertex at the center of
Q and with the edge i of Q as the opposite side. The triangles Tu...,T2p
are arranged in counterclockwise order around the vertex 0.

There is a different representation of S as a quotient of £2 under a group
of side pairing transformations in such a way that the center of Q projects
to the vertex A of the canonical triangulation. Namely, if we cut S open
along the geodesic arcs connecting the vertices 0 and B, then the result is
a fundamental 2p-gon which consists again of the triangles Tu...,T2p. The
arrangement of these triangles around the vertex A is given by a permutation a
of {1,..., 2p} with cr( 1) 1, i.e. the counterclockwise order of the triangles
around the vertex A is 7V(i>ji - • •, Ta(2p). The parity of a(i) coincides with the
parity of i. Moreover for every i e {1,... rp} we have a(2i) <r(2/+ 1) + 1

mod 2p.

The side pairings of Q which define S in such a way that the center
of £2 projects to 0 glue the edge 2k to the edge 1 and therefore we have

4
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cr(2) 2k and <r(3) 2& — 1. The basic group T of isometries of S permutes
the triangles Tt and fixes the vertex A. This implies that a normalizes the

group of permutations of {1,..., 2p} generated by the permutation r(i) i-\-2
mod 2p and hence necessarily a(2i) 2i(k — 1) + 2.

To obtain our surface S we have to identify the edge 2i — 1 with the

edge 2 im for some me {2,— 1} with an orientation reversing isometry.
The number m is uniquely determined if we require in addition that the

triangles adjacent to odd edges of Q project once again to the triangles l
(/ 1,..., /?) of the canonical triangulation.

Comparing the arrangement of triangles around 0 and A we conclude that

a{2m) 2p. Together with the above this shows that 2m(k — 1) + 2 0

mod 2p or, equivalently, m(k— 1) + 1 =0 mod p. In other words, if m, k > 2

are such that m{k— 1) + 1 =0 mod p then the surfaces S{p\k) and S(p;m)
are isometric. This shows the first part of the lemma.

To show the second part of our lemma let S be a simple triangle surface

which admits a non-trivial group X of orientation preserving isometries

normalizing the basic group F. Then the action of X on S descends to

an isometric action on the sphere S/T. The sphere S/T consists of two
equilateral triangles with angle ir/p glued at their boundaries. One of these j

triangles is the projection of the odd triangles of the canonical triangulation
of S, the other one is the projection of the even triangles.

Every isometry of S/T has to preserve the singular set {A, 0} C S/T
of ramification points which consists of the vertices of the two triangles
forming S/T. The only nontrivial isometry of S/T which fixes each of
the ramification points 0,A,Z? is the orientation reversing reflection which
exchanges the two triangles forming S/T. By assumption the elements of X

preserve the orientation of S and hence of S/T, and therefore there are two
possibilities :

1) X contains an element which permutes cyclicly the singular points
A,B, 0 of S/T and preserves each of the two triangles which form S/T.

2) X fixes one singular point of S/T, permutes the two other ones and

exchanges the two triangles which form S/T. I

Assume that S S(p;k) admits an isometry as in 1) above. Then
T* permutes the triangles of the canonical triangulation, but preserves their

parity. If we cut S S(p;k) open along those edges of the triangles of the |

canonical triangulation which connect the vertices A and B, then the result J

is the fundamental 2p-gon Q and we obtain our surface from Q by a side j

pairing which identifies the edges 1 and 2k. Since SP is an isometry of S
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which preserves the canonical triangulation, if we cut S open along the edges
connecting the vertices *F(A) and ^¥(B) then the result is again the polygon
Q, and once again we obtain S from £2 by identifying the edges 1 and 2k.
This together with the above consideration shows that k(k- 1)+1 =0 mod p
and therefore p divides k(k — 1) + 1.

Assume now that S admits an isometry as in 2) above. Then *¥

permutes the triangles of the canonical triangulation and changes their parity
with respect to a given counter clockwise numbering around a given vertex.
Let m < p — 1 be such that k(m— 1)+1 0 mod p. The above considerations
imply that necessarily k p - m + 1 and hence (m - l)2 1 mod p or
equivalently m(m — 2) 0 mod p. Since m > 1 is prime to p we conclude

I that either m 2 or that p divides m — 2. But m < p — 1 and therefore only
the case m 2 is possible.

We are left with showing that the isometry Nk is a hyperelliptic involution.
For this notice tat every fixed point ofJF projects to a fixed point for the
induced isometry SP of S/T. The map SP has precisely two fixed points : A

j singular point 0 of »S/r and the midpoint y of the geodesic arc connecting
j the two other singular points.
I There are exactly p 2g + 1 preimages of y in S. Since *¥2 Id and

j since SP normalizes T, either every preimage or no preimage is fixed by *F.
; The Riemann Hurwitz-formula [F] shows that the second case is impossible,
j Thus *¥ has exactly p + 1 2g + 2 fixed points and is a hyperelliptic

j
involution.

j COROLLARY 2.3. For every g> 2 there is a hyperelliptic surface of genus
g whose full automorphism group is the direct product of a cyclic group of

- order 2g +1 and a cyclic group of order 2 generated by a hyperelliptic
* involution.

Proof. We showed in Lemma 2.1 that for each there is a simple
triangle surface S(2g + I ; 2). By Lemma 2.2 and its proof, this surface is
hyperelliptic and its isometry group is a stated in the corollary.

Remark. There are surfaces S(p;k) for £ {M - 1)+ 1 | > 2} which
admit a cyclic group S of isometries of order 3 contained in the normalizer
of the basic group T. The simplest surface of this kind is the surface ,S'(19; 8)
of genus g 9.
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