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ON THE CLASSIFICATION OF CERTAIN PIECEWISE LINEAR

AND DIFFERENTIABLE MANIFOLDS IN DIMENSION EIGHT

AND AUTOMORPHISMS OF #f=1(5'2 x S5)

by Alexander Schmitt

Abstract. In this paper, we will be concerned with the explicit classification of
closed, oriented, simply-connected spin manifolds in dimension eight with vanishing
cohomology in the odd dimensions. The study of such manifolds was begun by
Stefan Müller. In order to understand the structure of these manifolds, we will
analyze their minimal handle presentations and describe explicitly to what extent these
handle presentations are determined by the cohomology ring and the characteristic
classes. It turns out that the cohomology ring and the characteristic classes do not
suffice to reconstruct a manifold of the above type completely. In fact, the group
Auto (#f= i(iN2 x S5))/ Auto (#f= i (N2 x £>6)) of automorphisms of #f=1(,S2 x S5) which

induce the identity on cohomology modulo those which extend to #f_ i (S2 x D6) acts

on the set of oriented homeomorphy classes of manifolds with fixed cohomology ring
and characteristic classes, and we will be also concerned with describing this group
and some facts about the above action.

1. Introduction

The classification of topological manifolds up to homeomorphy is an

extremely interesting and important problem. Let us restrict our attention to the

case of closed (i.e., compact without boundary) and oriented simply connected
manifolds. As a general classification scheme, surgery theory [1] solves this
problem for manifolds within a given homotopy type, e.g., that of a sphere.
Another approach to the classification "up to finite indeterminacy", using
rational homotopy theory, is due to Sullivan [34]. Nevertheless, there are only
a few explicit results which characterize the oriented homeomorphy type of a

manifold in terms of easily computable invariants. They usually require many
simplifying assumptions, such as high connectedness [36]. In this paper, we will



264 A. SCHMITT

consider even cohomology manifolds (or E-manifolds, for short) in dimension

eight, by which we mean closed, oriented, simply connected, piecewise linear
or smooth manifolds all of whose odd-dimensional homology groups with
integer coefficients vanish. The universal coefficient theorem implies that
all homology groups of an E-manifold are without torsion. Moreover, since

H3(X, Z2) 0 for an E-manifold, two E-manifolds of dimension at least 6

are homeomorphic (as topological manifolds) if and only if they are piecewise
linearly homeomorphic [16].

Though the class of E-manifolds is fairly restricted, it still contains many
interesting examples from various areas of mathematics, such as the piecewise
linear manifolds underlying the toric manifolds from Algebraic Geometry [4]
or the polygon spaces [12], to mention a few. So far, E-manifolds have been

classified up to dimension 6. Of course, in dimension 2 there is only S2,

in dimension 4, there is the famous classification result of Freedman various

interesting aspects of which are discussed in [15], and finally in dimension 6,
the classification was achieved by Wall [37] and Jupp [14]. Various applications
of the latter result to Algebraic Geometry are surveyed in [26]. Finally, we
refer to [2], [3], and [29] for the determination of projective algebraic structures

on certain 6- and 8-dimensional E-manifolds.

Acknowledgements. My thanks go to J.-C. Hausmann for his interest
in this work and for pointing out to me that an E-manifold of dimension eight
is actually not determined by its classical invariants.

2. Statement of the result

We now discuss the main result of this note, namely the classification of
E-manifolds of dimension 8 with vanishing second Stiefel-Whitney class in
the form of an exact sequence of pointed sets. This result was motivated by the

work [24]. In order to state it in a more elegant form, we will work with based

manifolds. By a based piecewise linear (smooth) E-manifold, we mean a triple
(X,x,y), consisting of a piecewise linear (smooth) E-manifold X and bases

x — xh2(M)) for H2(X, Z) and y (yi,..., for H4(X. Z). Recall

that by definition E-manifolds are oriented, so that the above data specify a

basis for H*(X, Z), such that the bases for Hl(X, Z) and Hs~l(X, Z) are dual to
each other with respect to the cup product. An isomorphism between piecewise
linear (smooth) based E-manifolds (X,x,y) and (X' is an orientation

preserving piecewise linear (smooth) isomorphism/: X —X1 with/*(x') x
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and /*(/) y. We denote by JPL(COO)(&, b') the set of isomorphy classes

of piecewise linear (smooth) based E-manifolds (X,x,y) of dimension eight

with vanishing second Stiefel-Whitney class, b, and b±(X) b'.

2.1 The classical invariants

In the terminology of [24], the classical invariants of an E-manifold consist

of its cohomology ring, the Stiefel-Whitney classes, the Wu classes, the

Pontrjagin classes, the Euler class, the Steenrod squares, the reduced Steenrod

powers, and the Pontrjagin powers. For an eight-dimensional E-manifold
X with vanishing second Stiefel-Whitney class, the main result of [24]
states that the classical invariants are fully determined by the following
invariants :

1. The cup product map

ÔX : S2H2(X, Z) —» H4(X, Z)

x0x'I—> U

2. The intersection form

7x: S2H\X,Z)— Z

y ® y'I—U /)[X].

Here, [Z] HS(X, Z) is the fundamental class determined by the orienta-
tion.

3. The first Pontrjagin class p\{X) G H4(X, Q)

Remark 2.1. The above invariants are not independent. By associativity
of the cohomology ring, the following relation holds

(1) 5^x)SaH\X,Z)V,
i.e.,

lx(Sx(xi <8> x2)0Sx(x30 x4)) 0 x3) 0 Sx(x2 0 x4))

for all X!,x2,X3,X4eH2(X,Z). Furthermore,



266 A. SCHMITT

PROPOSITION ([24], Prop. A.7 or Cor. 3.14 below). For every element

y e H\X,Z) we have

(2) P\{X)y 2y2 mod 4.

Note that this implies p\(X) G H4(X, Z). If, in addition, X is differentiate
then for every integral lift W G H2{X, Z) of w2(X) one has

(3) 3Pi(X)2 - 14Pl(X)W2 + 7W4 12 Sign(7x) mod 2688

Müller has also shown [24] that these relations imply all the other relations

among the classical invariants of X. Conversely, a piecewise linear manifold
X whose invariants obey relation (3) admits a differentiate structure [18],
[24].

We are led to the following algebraic concept : A system of invariants of
type (b,b') is a triple (5,7,/?), consisting of

• a homomorphism S : S2Z®h —» Z®b',

• a unimodular symmetric bilinear form 7 : S2Z®b —> Z, and

• an element p G Z®b

We denote by Z(b,b') the set of systems of invariants of type (b, b').
Now, let (X,v,y) be a based eight-dimensional E-manifold. This defines

a set of invariants Z(x,x,y) '-= (öx,Jx,Pi(X)) of type (b2(X),b4(XI)). Thus, we
have natural maps

ZFL(C°°\b,b'): 3FL(C°°\b, b') — Z(b, b')

[x, x,y\ I—> Z(x,x,y) »

It will be the concern of our paper to understand the maps. ZPL(COO) as

well as possible. The first result can be easily derived from Wall's work [36]
and deals with the case b — 0. It will be proved in detail in Section 4.1.

THEOREM 2.2. i) The map ZPL(0, b') is injective. Its image consists

precisely of those elements which satisfy the relations (1) and (2).

ii) Given two smooth based E-manifolds (X,y) and (X/,y/) with

b2(X) 0 b2{X') and Z(x,y) Z<j>y), there exists an exotic $-sphere
X such that (X#X,y) and (X\yr) are smoothly isomorphic. In particular,
the fibres of Zc°° have cardinality at most two. The image of Zc°° consists

exactly of those elements which satisfy the relations (1), (2), and (3).
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2.2 Manifolds with trivial cup form 5x

In addition to describing the explicit geometric meaning of the system

of invariants of an E-manifold X with W2(X) 0, we will describe those

manifolds X for which the cup form öx vanishes.

For any b > 0, let TC?^c } be the group of isotopy classes of piecewise
linear (smooth) embeddings of b disjoint copies of S5 x D3 into S8. The

following result will be established in Section 3.7.

Proposition 2.3. FL^ := TC£°°

Given an element [/] G FL^, we can perform surgery along the link
I and get a smooth based E-manifold (X(/),x(/)) with W2ÇX) 0 and

b^X) — 0, which is well defined up to smooth isomorphy of based

manifolds.

We will also use the following notation: Fix a pair (7,p) G Z(0,b')
which satisfies relation (2) (and (3)) and denote by JFL^c°°\b, 7,/?) the set of
isomorphy classes of based piecewise linear (smooth) E-manifolds (X,x,y)
with w2(X) 0, b2(X) b, jx 7, and p\(X) p. Pick a three-
connected piecewise linear (smooth) based E-manifold (Xo,y with 7x0 7
and pi(Xo) p. In the smooth case, let $8 Z2 [17] be the group of
exotic 8-spheres, and set tf(X0) := i?8, if Z0 is not diffeomorphic to X0#X,
Z a generator for #8, and i9(X0) := {[-S8]} C â8 otherwise. Now, we define

maps

KPL(b,7,p): FL„^3PL(

[i] [x(i)#x0,my0]

and

f 00 n OO

Kx0 FLè©tf(X0)—(b,y,p

([/], [2]) 1—^ |x(Z)#Xo#E,

In 3PL(C°°)(b,7,p),we mark the class [(#f=1(5'2 x 5,6))#X0,x,y()J, where x
comes from the natural basis of //2(#?=I(S2 x S6),Z). Then our main result
is the following
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THEOREM 2.4. i) For every b > 0 and every pair (7,/?) which satisfies
the relation (2),

{1} —> FL*, KeL^j,p) 3—> Hom(52Zè,Zy)

1 I—^ [trivial link] [X,x,y] i—^
A aw exact sequence of pointed sets.

ii) For every b > 0 and every pair (7,p) which satisfies the relations (2)
awd (3),

{1} — FU©1?(Z0) ac°>,7,<p) — Hom(52Zfc,

1 I—^ [trivial link] [X,x,y] i—^ £x

A aw exact sequence of pointed sets.

The proof will be given in Sections 4.2 and 4.3.

Remark 2.5. i) In the PL setting, we will show that the inclusion of FL^,

into TPL(&, 7, <p) extends to an action of FL^ on TPL(&, 7, <p), such that the

orbits are the fibres of the map [X, x, y] 1—> Sx •

ii) On all the sets occurring in Theorem 2.4 there are natural (GL^(Z) x
GLfc/(Z)) -actions, and the maps are equivariant for these actions. Therefore,

by forming the equivalence classes with respect to these actions, we get the

classification of E-manifolds with vanishing second Stiefel-Whitney class up
to orientation preserving piecewise linear (smooth) isomorphy.

iii) We will discuss in Section 3.7 the structure of the group FL^. It turns

out that it is finite if and only if b — 1. It follows easily that the set of
GL^Z)-equivalence classes in FL^, is infinite for b > 2. Thus, the tohomology
ring and the characteristic classes classify E-manifolds of dimension eight up
to finite indeterminacy only if the second Betti number is at most one.

The starting point of our proof of the above results will be the theory of
minimal handle decompositions of Smale which states that X can be obtained

from D8 by first attaching 2-handles, then bê&X) 4-handles, then

&20O 6-handles and finally one 8-handle. At each step, the attachment will
be determined by the isotopy class of a certain framed link in a 7 -manifold,
and we will first explain how to read off the isotopy class of the attaching
links for the 2- and 4-handles from the invariants.
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3. Preliminaries

We collect in this paragraph the background material and some preliminary
results which we will use in our proof. Most of the results are by now
standard results from various parts of algebraic, differential, and piecewise
linear topology.

3.1 The structure of manifolds: handle attachment and surgery

Let M be an m-dimensional manifold with boundary. Suppose we are

given an embedding /: Sx~l x Dm~x —» dM. We then define

M' M U/ (Dx x Dm~x)

and say that M' is obtained from M by the attachment of a X-handle along /.
Moreover, f(Sx~l x {0}) is called the attaching sphere, Dx x {0} the core disc,
and {0} x Sm~x~l the belt sphere. We will often simply write M' MUHX.

Remark 3.1. i) If M is assumed to be differentiate and / to be a

differentiate embedding, handle attachment can be described in such a way
that the resulting manifold is again differentiate (see [17], VI, §§6 and 8),

i.e., no "smoothing of the corners" is required.

ii) If M is oriented, then M' will inherit an orientation which is compatible
with the given orientation of M' and the natural orientation of Dx x Dm~x,
if and only if / reverses the orientations.

The next operation we consider was introduced by Milnor [21] and Wallace
[38] and goes back to Thorn. For this, let N be a manifold of dimension
m — 1 and /: Sx~l x Dm~x —^ N an embedding. Denote by / the restriction
of / to Sx~l x sm~x~l, and set

X(NJ) := (V \ int/(SA-1 x Dm~x)) Uj (Dx x Sm-X~l)

We say that is constructed from N by surgery along /. Informally
speaking, we remove from N a (A - 1)-sphere with trivial normal bundle and
replace it with an (m — À — 1)-sphere, again with trivial normal bundle.

Remark 3.2. i) If N is oriented, then / has to be orientation preserving
for x(NJ) to inherit a natural orientation from those of N and Dx x Sm~x~l.
This is because Sx~l x Sm~x~l inherits the reversed orientation as boundary
of N\mtf{Sx~l xDm~x).
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ii) The operations of handle attachment and surgery are closely related:
Let M be an m-dimensional manifold with boundary N := dM and

/: Sx~l x Dm~x —» N an embedding. Now, attach a A-handle along /
in order to obtain M'. Then dM' %(AJJ).

We will also perform a "surgery in pairs". For this, N is assumed to be

an (m — 1)-dimensional manifold, and K a submanifold of dimension k— 1.

Assume that, for some À < k, we are given an embedding /: Sx~l xDm~x —» N
which induces an embedding /* := f\s\-i xDk-\ : Sx_1 x Dk~x —» K. Then

X(K,f*) is naturally contained as a submanifold in x(Af,/).
The next result is a special case of the "minimal presentation theorem"

of Smale [31] and is crucial for the explicit analysis of the structure of a

manifold.

THEOREM 3.3. Let X be a closed simply connected manifold of dimension

m > 6 with torsion free homology. Then there exists a sequence ofsubmanifolds

Dm ^ W0 C Wi C W2 C • • C Wm X,
such that Wi is obtained from W/_ \ by attaching bfX) i-handles, i

Moreover, for any such sequence, there exists a dual sequence

WoCtT! C-.-C Wm=X,
such that the attaching (i— 1) -spheres in Wi-\ coincide with the belt spheres
in Wm-t, i 1,... ,ra.

Proof For differentiate manifolds, an attractive presentation of the

relevant material is contained in Chapters VII and VIII of [17]. In the piecewise
linear category, handle decompositions are discussed in [27] (cf. also [13]).
However, the statement concerning the number of handles is not explicitly
given there. Nevertheless, one verifies that the necessary tools (such as Whitney
lemma and handle sliding) are also proved in [27].

Remark 3.4. i) Retracting all À-handles to their core discs, starting with
A 0, yields a CW-complex which is homotopy equivalent to X (cf. [27],

p. 83).

ii) Observe that, by i), a handle decomposition as in Theorem 3.3 yields
a preferred basis for T/*(X, Z). By renumbering, orientation reversal in the

attaching spheres, and handle sliding, one can obtain any basis of 7/*(X, Z)
as the preferred basis of a handle decomposition ([17], (1.7), p. 148).
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iii) If X comes with an orientation, we may assume that Dm is orientation

preservingly embedded and that all attaching maps are orientation reversing.

3.2 Consequences for E-manifolds of dimension eight with w2 0

Let X be a piecewise linear (smooth) E-manifold of dimension eight with

w2(X) 0. The first observation concerns the structure of W2.

Lemma 3.5. One has W2 #f=iGS2 x D6).

Proof. The manifold W2 is an (8,1)-handle body and as such homeo-

morphic to the boundary connected sum of b D6 -bundles over S2 ([17], §11,

p. 115). As 7ït(SO(4)) Z2 and we have requested w2(X) 0, the claim

follows.

The next consequence is

The manifold W4 is determined by a framed link of b4(X) three-dimensional

spheres in #f=1(S2 x 55).

We shall look into the classification of such links below. The third

consequence is

Lemma 3.6. i) dW4 ^ #f=1(S2 x S5).

ii) The manifold X is of the form W4 U/ #f=1(52 x D6) where

f: #f=i(S2 x S5) —x dW4

is a piecewise linear (smooth) isomorphism, such that /* maps the canonical
basis of H2(#U(S2 x S5), Z) to the preferred basis of H2(dW4,Z).

Proof i) This follows because dW4 dW2. ii) follows because

X W4 U W2, and W2 #f=1(52 x D6), by Lemma 3.5.

3.3 Homotopy vs. isotopy

By Theorem 3.3, the manifold is determined by the ambient isotopy classes

of the attaching maps. However, the topological invariants of the manifold give
us at best their homotopy classes. It is, therefore, important to have theorems

granting that this is enough. In the setting of differentiable manifolds, we have
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THEOREM 3.7 (Haefliger [6], [7]). Let S be a closed differentiable manifold
of dimension n and M an m-dimensional differentiable manifold without
boundary. Let f : S —> M be a continuous map and k> 0, such that

TTitf): TTi(S) ^ mW
is an isomorphism for 0 < i < k and surjective for i k + 1. Then the

following is satisfied:
1. If m > 2n — k and n > 2k + 2, then f is homotopic to a differentiable

embedding.

2. If m > 2n — k and n > 2k + 2, then two differentiable embeddings of S

into M which are homotopic are also ambient isotopic.

In the setting of piecewise linear manifolds, similar results hold true. We

refer to Haefliger's survey article [9]. For our purposes, the result stated below
will be sufficient.

THEOREM 3.8. Suppose S is a closed n-dimensional manifold, M an
m-dimensional manifold without boundary, and f: S —y M a continuous

map. Assume one has

• m — n >3 ;

• S is (2n — m + 1) -connected;

• M is (2n — m + 2) -connected.

Then:

(1) / is homotopic to an embedding;

(2) two embeddings which are homotopic to f are ambient isotopic.

Proof. The theorem of Irwin ([27], Thm. 7.12 and Ex. 7.14, [13], Thm. 8.1)

yields (1) and that f\ and fa as in (2) are concordant. But, sinGe m — n > 3,
concordance implies ambient isotopy ([13], Chap. IX).

COROLLARY 3.9. Let S := S3 and M a simply connected differentiable

or piecewise linear manifold of dimension 1 without boundary. Then irffM)
classifies differentiable and piecewise linear embeddings, respectively, of S3

into M up to ambient isotopy.

COROLLARY 3.10 (Zeeman's unknotting theorem [39]). For every m,n
with m — n>3, any piecewise linear embedding of Sn into Sm is isotopic to

the standard embedding.
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3.4 Some 4-dimensional CW-complexes

By Remark 3.4, a handle decomposition of X gives us a CW-complex
which is homotopy equivalent to X. The following discussion will enable us

to understand the 4-skeleton of that complex.
Let W := S2V - - - \/S2 be the Z?-fold wedge product of 2-spheres. Suppose

X is the CW-complex obtained by attaching a 4-cell to W via the map

g e 7r3(W). The Hilton-Milnor theorem ([30], Thm. 7.9.4) asserts that

TTiiW)5=© ir3(S2)©© 7T3(S3).

i=l 1 <i<j<b

Choosing the standard generators for ^(S2) and ^(S3), we can describe g

by a tuple (/,, i 1, ».., b; /^, 1 < i < j < b) of integers. These integers
determine the cohomology ring of X W Ug D4 as follows :

PROPOSITION 3.11. Let y E H4(x, Z) be the generator of HA(X, Z) given
by the attached A-cell and x\ the canonical basis of H2(X, Z)
H2(W, Z). Then

Xi U xj — Ijj y, 1 < i < j < b

XiDxi — U-y, / 1

This is proved like [22], (1.5), p. 103. We recall the proof in the following
example.

Example 3.12. We treat the case b — 2. Consider the embedding

i:S2V S2 ^S2xS2m-CP00 x CP00

The standard basis for //4(CP°° x CP°°,Z) Z®3 is given by the elements

>'i, >'2, >'3 obtained from attaching D4 via (1,0; 0), (0,0; 1), and (0,1 ; 0),
respectively. Let h : D4 —2 D4 V D4 V D4 be the canonical map followed by

($ • xI—> & mit(x)) V (d x I—2 ûm/]2(x)) V (t? • x i—2 â

Here, mk stands for a representative of [k id^s] G 7t3(53) and
D4 — {t? • x I x G 53,i? g [0,1]}. Now, h and i glue to a map

/ : X —2 CP00 x CP00, and

f : Z/4(CP°° x CP00, Z) —2 //4(X, Z)

+ Û2y2 + a-iyi 1—2 (a\l\ + a2^i2 + a3h)y,

so that the assertion follows from the naturality of the cup-product.



274 A. SCHMITT

3.5 PONTRJAGIN CLASSES AND 7T3(SO(4))

Vector bundles of rank 4 over S4 are classified by elements in 7r3(SO(4)).
In our setting, such vector bundles will appear as normal bundles. We recall,
therefore, the description of that group and relate it to Pontrjagin classes and

self intersection numbers.

First, look at the natural map 7r3(SO(4)) —* 7r3(SO(4)/ SO(3)) tt3(S3).

This map has a splitting ([32], §22.6) which induces an isomorphism

tt3(SO(4)) 7T3(SO(3)) © 7T3(S3)

Let a3 be the generator for 7t3(SO(3)) Z from [32], §22.3, and ß3 :=
[ids*] 7T30S3), so that we obtain the isomorphism Z 0 Z —» 7r3(SO(4)),

(ki,k2) I—» kia3-\-k2ßs. Finally, the kernel of the map 7r3(SO(4)) —> 713 (SO)
to the stable homotopy group is generated by —a3+2ß3 ([32], §23.6), whence

[23], (20.9), implies

Proposition 3.13. Let E be the vector bundle over S4 defined by the

element k\a3 + k2ß3 G 7r3(SO(4)). Then

p1(m ±(2k1+4k2).

COROLLARY 3.14. Let f: S4 —» M be a differentiable embedding of
S4 into the differentiable %-manifold M. Let E :=/*7m/7s4 be the normal
bundle. Then the self intersection number s of f(S4) in M satisfies

2s P\{E) mod 4.

Proof If E is given by the element k\ a3+k2ß3 g 7t3(SO(4)), then s — k2

([17], (5.4), p.72). Since p\{E) ±(2k2 + 4&i), the claim follows.

3.6 Links of 3-spheres in #f=1(52 x S5)

If X is a closed E-manifold of dimension 8 with w2(X) 0, then

W2 #i=1(S2 x D6), b b2(X), by Lemma 3.5. Thus, W4 is determined by
a framed link of 3-spheres in dW2 #f=1(S2 x S5). Therefore, we will now
classify such links.

So, let W := #f=1(5'2 x S5) be a b-fold connected sum. We can choose

b disjoint 2-spheres Sf, i 1,... embedded in W and representing the

natural basis of H2(W, Z). One checks that the homotopy type of W is given

up to dimension 4 by the b -fold wedge product S2 V • • • V S2. Suppose we are

given a link of b' three-dimensional spheres, i.e., we are given b' differentiable

embeddings Qi : S3 —> W, i 1,..., b', with gfS3) fl gfiS3) 0 for i / j.
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By the transversality theorem ([17], IV.(2.4)), one sees that we may assume

Sf n 9j(S3) 0 for all i and j.
By Corollary 3.9, the ambient isotopy class of the embedding gk is

determined by the element pk := \M\ 7r3(Wt), Wk W \ \J#k $(&),
k 1,... ,b'.We clearly have (compare [8])

it3(Wk) ir3(S2 V • V S2y S3 V • • • V

bx (b' — l)x

so that the Hilton-Milnor theorem yields

ft3(Wk} 0 TT^iS2) © 0 ^(S3) ® 0 7T3(53)

i= 1 1 <i<j<b j^k

Hence, we write pk as a tuple of integers :

<Pk (A i-\,...,b\ l\j, \<j j ^ k)

Observe that, for j / k, pk is mapped under the natural homomorphism

TT3(W0 — H3(Wk,Z) -^H3(w\ gj(S3),Z) Z)

to the image of the fundamental class of S3 under Thus, Àkj is just the

'usual' linking number of the spheres gk(S3) and gfS3) in W (compare [8]).

3.7 Links of 5-spheres in S8

Let TCPbL(C } be as before, and let C^L(C } be the group of isotopy classes

of piecewise linear (smooth) embeddings of b disjoint copies of S5 into Ss.

For b — 1, these groups are studied in [10], [19], and [20]. A brief summary
with references of results in the case b > 1 is contained in Section 2.6 of
[11]. We will review some of this material below.

Proposition 3.15. We have TCf°° Z2.

Proof. Since tt5(SO(3)) Z2, the standard embedding of S5 into S8

with its two possible framings provides an injection of Z2 into TC^c By
Zeeman's unknotting theorem 3.10, the map Z2 —» TCP^ is an isomorphism.
As remarked in Section 2.6 of [11], TCPP is isomorphic to the group
of h-cobordism classes of framed submanifolds of S8 which are homotopy
5-spheres. Moreover, by [10] and [19], there is an exact sequence

> <d6 —» TCcx
°°

—> Tti —» >â5 —> • • •

As the groups $5 and $6 of exotic 5- and 6-spheres are trivial [17], our
claim is settled.
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Let Lfc C Cb°° be the subgroup of those embeddings for which the

restriction to each component is isotopic to the standard embedding. As
observed in Section 2.6 of [11], Zeeman's unknotting theorem 3.10 implies
that hb ClL. The following result settles Proposition 2.3 :

Corollary 3.16. TCl°° 9* ^ Lb ©® Z2.
i=i

For the group Lb, Theorem 1.3 of [11] provides a fairly explicit description
as an extension of abelian groups. For this, consider the Z?-fold wedge product

Vil S2 of 2-spheres together with its inclusion i: \Jb=l S2 M- Xf=1 S2 into the

Z?-fold product of 2-spheres. Finally, let pp \Jb=l S2 —» S2 be the projection
onto the zth factor, i— 1,..., b. Set, for m= 1,2,...,

b

A Zj:=Ker(7rjpj) : vrm(\/ S2) —> ^m(S2)), j=\
1=1

K :=©A Zj
j= 1

and

b

Tib•=Ker(7rm(i): S2) -4 ©7rm(S2))
1=1 1=1

and define

nnm a m rrm+1
Wb • JH * llb

on by w(a) := [a,i;]. Here, [.,.] stands for the Whitehead product

inside the homotopy groups of \/bi=lS2 and S2 <—» Vf=i f°r the

inclusion of the zth factor, i 1 Theorem 1.3 of [11] yields in

our situation

THEOREM 3.17. There is an exact sequence of abelian groups

0 —>• Coker(w^) —> Lb—s- Ker(w|) —> 0.

We remark that the formulas of Steer [33] might be used for the

explicit computation of Whitehead products and thus for the determination
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of Coker(wf) and Ker(wb). The free part of Lb, e.g., can be obtained quite

easily. We confine ourselves to prove the following important fact.

COROLLARY 3.18. The group Lb has positive rank for b > 2.

Proof Let Lb := ®Z>1L^;/ be the free graded Lie algebra with

L^i := ®f=1 Z • et. For I 2,3,... let e\,..., eld[ be a basis for

Lbj consisting of iterated commutators of the et. By assigning Lt to

et, every iterated commutator c G Lbj in the et defines an element

a(c)G 7T;_)_1 (Vf=l V)-

To settle our claim, it is certainly sufficient to show that Coker(u|) has

positive rank. Now, by the Hilton-Milnor theorem

nü ® ®7T7(5') • a(4_1) •

1=3k= I

Note that tt7(S1) is finite for I £ {4,7} (see [32] and [35] for the explicit
description of those groups). The Hopf fibration S7 —^ S4 [32], on the other
hand, yields a decomposition tt7(S4) 7r60S,3)®7r7(S'7) Zi2®Z. Therefore, it
will suffice to show that the free part of is mapped to 0^ tt7(S7) a(ej).
For j — 1,..., b, we have

A lj© 7T6(52) • H© 00 w6(S<)

i^j l=3k=l

The group tt6(S1) is finite for I < 6, and we obviously have [a(e5k),Lj]
®([e5k,ej]). If we expand the commutator [e5k, efi in the basis e\,... we
find an expansion for [cd>f),®l in terms of the a{e\).

COROLLARY 3.19. The set of GLb(Z)-equivalence classes of elements in
Lb is infinite for b> 2.

Proof We have seen that the GL*(Z)-set L*j3 is contained in the
GL^(Z)-set Lb. The GL^(Z)-action on Lb?3 originates from a homomorphism
GLb(Z) —> GL(LM) := Autz(L^;3). In particular, any matrix g e GL^(Z)
preserves the absolute value of the determinant of any <73 elements in Lb 3.
This implies, for instance, that a • e\ and b • e\ cannot lie in the same
GL^(Z) -orbit, if 0 < a < b.
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4. Proof of Theorem 2.2 and Theorem 2.4

From now on, X stands for an eight-dimensional E-manifold with
w2(X) 0.

4.1 Proof of Theorem 2.2

The classification result for 3-connected E-manifolds of dimension eight
is a special case of a result of Wall's [36] and can be easily obtained with
the methods described in [17], VII, § 12. Let us recall the details, because we
will need them later on.

We fix a basis b for H^X, Z) and let y be the dual basis of T/4(X, Z).
Then there is a handle presentation X Ds U H\ U • • • U H\, U Ds with b

as the preferred basis. The manifold T := D8 U H\ U • • • U H\, is determined

by the ambient isotopy class of a framed link of 3-spheres in S7, having
b' components. Let us first look at such a link, forgetting the framing, i.e.,

suppose we are given embeddings gt : S3 —| S7 with 5/ H Sj — 0 for
i ^ j, Si := gfS3), i 1 By 3.9, we may assume that the gt are

differentiable. Observe that the normal bundles of the Si are trivial.
We equip Si with the orientation induced via gt by the standard orientation

of S3 and the normal bundle of Si with the orientation which is determined

by requiring that the orientation of Si followed by that of its normal bundle

coincide with the orientation of S7. Therefore, a 3-sphere F-t which bounds

the fibre of a tubular neighborhood of Si in S7 inherits an orientation and

thus provides a generator et for Ho>(S7 \ Si, Z) Z, i — 1,..., b'. For i / j,
the image of the fundamental class [Si] in H3(S7\Sj, Z) is of the form Àij-ej.
The integer À

y is called the linking number of Si and Sj.

For i— 1,..., b', the manifold S7 \ IJ^- Sj is up to dimension 5 homotopy
equivalent to Fj, and

7T3 (.S7 \ (J .V;) - (V F=©^3 (V \ Z)
iFi j^i 77^1

Under this identification, we have [#/] Y2j^i ^ij ' ej • The [gt] determine the

ambient isotopy class of the given link (3.9), and we deduce

PROPOSITION 4.1. The linking numbers \jjf 1 < i < j < b', determine

the given link up to ambient isotopy.

The sphere Si bounds a 4-dimensional disc Df in D8, i
which we equip with the induced orientation. We may, furthermore, assume
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that the D~ intersect transversely in the interior of Ds. Then the Ay coincide

with the intersection numbers Df .DJ, 1 < i < j < b'. For an intuitive

proof (in dimension 4), see [28], p. 67. Now, every disc Df is completed

by the core disc Df of the zth 4-handle to an embedded 4-sphere X; in

T, i I,... ,bj and, since all the core discs are pairwise disjoint, the Ay-

coincide with the intersection numbers X;.Xy, 1 < i < j < b'. Finally, X is

obtained by gluing an 8-disc to T along dT, and the spheres X/ represent
the elements of the chosen basis b of 7/4 (AT, Z). Identifying the intersection

ring with the cohomology ring of X via Poincaré-duality, we see

COROLLARY 4.2. The linking numbers Ay coincide with the cup products

(y/Uy/)[X], 1 < i < j < b', i.e., the link of the attaching spheres is determined

up to ambient isotopy by the basis b and the cup products.

As we have remarked before, the normal bundles of the Sj are trivial,
whence there exist embeddings jf : S3 X DA —b S1 with /°|s3x{0}
i 1,..., b'. From the uniqueness of tubular (in differential topology) or
regular (in piecewise linear topology) neighbourhoods, every other embedding
fi: S3 x D4 —with fil# x {0} — 9iisambient isotopic to one of the form
flh'] •'= ((x,y)'—(x,hi y)),[hi\G7t3(SO(4)), i I,... ,b'. Corollary 3.14

implies that we can choose the jf, i 1, in such a way that the

following holds:

LEMMA 4.3. Suppose T is obtained by attaching A-handles along ]

with [hi] k[a3+ ki2ß3, i— 1 ,b',then
Z/.L,- k'2 and Pi(Tt\e,)±(2 +

This shows that also the framed link used for constructing T and X
is determined by the system of invariants associated to proving the
injectivity in Part i) of the theorem. Moreover, the assertion about the fibres
in Part ii) is clear.

Conversely, given a system Z of invariants in Z(0,b'), satisfying relation
(2), there exists a based 3-connected manifold (X,y) realizing Z. Indeed,
by the above identification of the invariants, Z determines a framed link
in S1 and thus the manifold T :=D8 U H\U• • • U The boundary of
T is a 7-dimensional homotopy sphere ([17], (12.2), p. 119) and, therefore,

piecewise linearly homeomorphic to V. Hence, X — Us? Lft is a piecewise
linear manifold with the desired system of invariants, settling Part i). If, in
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addition, relation (3) holds, then [18] ensures that X will carry a smooth
structure (compare Theorem A.4 of [24]), finishing the proof of Part ii).

4.2 The determination of W4 in the general case

We have a handle decomposition Wo C W2 C W4 C We C X of X
providing preferred bases b of H2(X,Z) and c of H4(X, Z), respectively. Let
x and y be the dual bases of H2{X, Z) and H4(X, Z), respectively. Finally,
let y* be the basis of H4(X, Z) which is dual to y via yx.

We find ÖW2 #f=1(S2 x S5), and W4 is determined by the ambient

isotopy class of a framed link of 3-spheres in ÖW2 with b' components. Let
fk'. S3 x D4 —» dW2 be the kth component of that link and gk '•= fk\s3x{0} >

k— 1,..., b'. In the notation of Section 3.6, we write [gk] G ^(dW^U^- Sj
in the form (if, i 1,..., b, Z|, 1 < i < j < b; XkjJ ^ k), k — 1,..,, bf. To

see the significance of the Zf and Z|, note that, by Remark 3.4, W2UH\ C X
is homotopy equivalent to (\Jbi=lS2) U9k D4. The cohomology ring of that

complex has been computed in Proposition 3.11, so that the naturality of the

cup product implies the following formulae for the cup products in X :

b'XiU Xj ly y%,

k= 1

b'

XiU Xi J2lryL
k= 1

Therefore, the l\ and l\- are determined by Sx and jx (used to compute y*
in fact If 7x(S(xi 0 xt) (g) yk) and if- 7x(S(xi 0 xj) 0 yk).

To determine the À
y and the framings, we proceed as follows: Look

at the embedding #f=i(S2 x S5) 2f. There exist b embedded 2-spheres

Sf,.., 5 Si which represent the basis b and which do not meet the given link.
Finally, #f=1(S2 xS5) obviously possesses a regular neighborhood in X which
is homeomorphic to #f=1(S2 x S5) x Dl. Thus, we can perform "surgery in

pairs" as described in Section 3.1. The result is a 3-connected manifold X*
containing S7. It is by construction the manifold obtained from the framed link
in S7 derived from the given one in #f==1(S2 x S5) (cf. Section 4.1). We will be

finished, once we are able to compare the invariants of X to those of X*. To

do so, we look at the trace of the surgery, i.e., at Y (X x I) UHf U • • • U H#,
the 5-handles being attached along tubular neighborhoods of the St x {1} in

Xx {1}. Then <97 XUX*.
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The Mayer-Vietoris sequence provides the isomorphisms

b'

H4(X,Z) H4(X\ [_|(5, x Z) S H4(X* Z).
i= 1

Set H:=H4(X\\JïLi(Si x -O6).z) • BYLefschetz duality ([5], (28.18)), there

is for each qeN a diagram (omitting Z-coefficients)

H"-\Y) —> W~\dY)—»• W(YM) + #9(L)

H10_?(F,ÖF) —-> H9-q(dY) — ff9-,(D —+ H9-q(Y,dY)

where the left square commutes up to the sign (— 1 f"1 and the other two

commute. We first use it in the case q5. Look at the commutative diagram

H -)H4(X*,Z)

I" I
Ü4(X, Z) s. H4(Y, Z),

in which all arrows are injective, because H5(Y,X; Z) 0 H5(Y,X*; Z) (cf.

[17], p. 198). Using the identification //4(97, Z) 7/©//, we find

(5) Im(ff5(Mr;Z)) {(y,-y)eff®ff}.

Similar considerations apply to the case q 9. Taking into account that X*
sits in 7 with the reversed orientation, (4) shows that the forms 7-x and jx*,
both defined with respect to the preferred bases, coincide. In the same manner,
the pullbacks of p\{Y) to H4(X, Z) and //4(X*,Z), respectively, agree. Since

X and X* are the boundary components of 7, these pullbacks are p\(X) and

/?i(X*), respectively, and we are done.

4.3 Manifolds with given invariants

One might speculate, especially in view of the classification of E-manifolds
in dimension 4 and 6, that the invariants 5X, and p\(X) might suffice

to classify E-manifolds with w2(X) 0 in dimension 8. However,
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Lemma 3.6 shows that these invariants determine only W4 and we still
have the choice of an isomorphism in gluing #f=1(S2 x S5) to W4, and

different gluings may lead to different results. The following example,
which was communicated to me by J.-C. Hausmann, illustrates this

phenomenon.

Example 4.4. One has 7r5(SO(3)) Z2 [32]. Therefore, there are two
different S2-bundles over S6, call them X := S6 x S2 and X' := S6 x S2.

Obviously, X and X' are spin-manifolds with trivial invariants, but one

computes 7r5(X) Z2 and ^(X7) {0}.

Fix b, b', and a system Z of invariants in the image of the map
Z^c°°\b,b'). As we have seen, Z determines a certain manifold W4

whose boundary is diffeomorphic to #bi=l{S2 x S5) together with a basis

b for //2(9W4, Z). Let be the natural basis for H2(#f=1GS'2 x S5), Z),
PJ / /"» OO \

and denote by Iso0
1 } the set of piecewise linear (smooth) isomorphisms

/: #f=1CS2 x S5) —> 9W4 with /*(fi0) b. Our results show that every
based piecewise linear (smooth) manifold (X, };) with system of invariants

Z is piecewise linearly (smoothly) isomorphic to a manifold of the

form

X(f) :=dW4 U if#f=1(S2xS5forsome / e IsOoL(C<x>)

with its given bases for H2(X(f), Z) and H4(X(f Z). Conversely, every mani-

fold of the form X(/) is a piecewise linear (smooth) based E-manifold with
invariants Z.

Now, suppose we are given fj' G IsOqL(C \ such that X(f) and X(f')
are isomorphic as piecewise linear (smooth) based manifolds. We claim that

we can find an isomorphism cp: X(f) —» X(ff) with ip(W4) W4. For

this, look at the handle decomposition W0 C W2 C W4. Since Wo is

just an embedded 8-disc in X(f) and X(ff), respectively, we can choose

Lp with (p(Wo) — Wo- Let l C ôWo be the framed link for attaching
the 2-handles. Then (p(l) and I are isotopic. Therefore, we can find a

level preserving diffeomorphism [—1,1] x dWo —» [—1,1] x <9Wo with

V>l{±i}xcW„ i<W0 and ^l{o}xdw0(AO) I- If we choose a tubular

neighborhood [-1,1] x 8Wo) of 8Wo in X(f'), we can use ijj to
define an automorphism ip: Xif —> X(f') with ip((p(l)) I. Thus,

ij; o cp maps Wo onto WoA similar argument shows that we can achieve

p(W4) W4.
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Let AutQL(COO)(#f=1(52 x D6)) be the group of piecewise linear (smooth)

automorphisms g of #f=1(S2 x D6) with H2(g, Z) id and similarly define

AutßL(C \W4). Then we have just established

PROPOSITION 4.5. The set of isomorphy classes of based piecewise linear

(smooth) E-manifolds with invariants Z is in bijection to the set of equivalence

classes in lsolL(COO) with respect to the equivalence relation coming from the

group action

Au C(C°°\W4)xAut0PL(C°O)(#f=i(52 x x Iso —»• Iso^
C h,g,f)I—» h\ow4ofO g|^](S2XS5) •

We shall see in Lemma 5.1 that AutPL(#f=1(S2 x D6)) contains the

commutator subgroup of AutPL(#f=1(S2 x

COROLLARY 4.6. The set of isomorphy classes of based piecewise linear

E-manifolds with £>2 b and £>4 0 is in bijection to the abelian group

AutPL(#f=1(52 x S5))/AutJL(#f=1(S2x D6)).

I have been informed by experts that the structure of the groups
AutQL(C )(#f==1(52 x S5)) and AutQL(C )(#f=](52 x D6)) has not yet been

determined and that this would be a rather difficult task. Therefore, we
choose the viewpoint of framed links in order to finish our considerations.

In Theorem 5.2, we will then use this viewpoint to compute the group
AutoL(#f=1(52 x S5))/ AutoL(#f=1(S2 x D6)).

As above, let (X, x, y) be a based piecewise linear (smooth) E-manifold with
zero second Stiefel-Whitney class and system of invariants Z(X,x,y) (^7,/?)•
We have seen that we can find a framed link lx of 2-spheres in X which

represents the basis x and perform surgery along this link in order to get a

3 -connected piecewise linear (smooth) based manifold (X*, y) together with a

framed link /£, of 5-spheres in it. If (X', x7, /, lx>) is another such object where

(X^x7,/) is isomorphic to (X,x,y), then clearly we can find an isomorphism
(p: (X,x,y) —> (X/,x/,y/) with tp(lx) lx,. Such an isomorphism p yields,
after surgery, an isomorphism ip* : (X*,y) —> (X7*,/) with p*(lXf) lX'* • In
particular, the manifold (X*, y) is determined up to piecewise linear (smooth)
isomorphy. We call it the type of (X,x,y). Note that this notion matters only
in the smooth case, by Theorem 2.2.
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To summarize, we have

PROPOSITION 4.7. The set of isomorphy classes of based piecewise linear
(smooth) E-manifolds of type (X*, y) is in bijection to the set of equivalence
classes offramed links of 5 -spheres in X* where two such links I and l' are
considered equivalent, if there is a piecewise linear (smooth) automorphism
p* : (X*, y) — (X*, y) with p*(Q V.

Example 4.8. The group Zfb acts freely on the set of isotopy classes of
framed links of b spheres of dimension 5 in X* by altering the framings of
the components. Note that the two possible framings of the trivial bundle on a
5 -sphere are distinguished by the fact that one extends over D6 and the other
does not. This property is preserved under piecewise linear homeomorphisms,
so that we conclude that Zfb acts also freely on the set of equivalence classes

of framed links of b spheres of dimension 5 in X*.
Note that this completes the classification of Spin-E-manifolds of dimension

eight with second Betti number one.

Let us look at manifolds of type Ss. We claim that two framed links /

and l' of 5-spheres are equivalent in the above sense, if and only if they are

isotopic. Clearly, after replacing I and t by isotopic links, we may assume
that both of them are contained in the Southern hemisphere and that p* is

the identity on the Northern hemisphere. Now, choose a representative p^ for
the isotopy class of p*~l which is the identity on the Southern hemisphere.
Then p* o p* is isotopic to. the identity and carries I into If.

For differentiate manifolds, the operation X i—» X#X, X an exotic

8-sphere, establishes a bijection between the set of isomorphy classes of
based smooth E-manifolds of type S8 and the set of isomorphy classes of
based smooth E-manifolds of type X. We conclude

COROLLARY 4.9. i) The set of isomorphy classes of based piecewise
linear E-manifolds with Z?2 b and £>4 0 is in bijection to the group
FL* L*®©?=1Z2.

ii) The set of isomorphy classes of based smooth E-manifolds with £>2 b

and £>4 0 is in bijection to the group # 0 FL^.

Finally, we have to deal with those manifolds for which the cup form ö

is trivial. Our investigations in Sections 3.6 and 4.2 show that the framed

link of 3-spheres in dW2 can be chosen to be contained in a small disc.
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In other words, a manifold X with Sx 0 is piecewise linearly (smoothly)

isomorphic X^#X* where X* is the type of X and b4{X^) 0. As our surgery

arguments above reveal, an isomorphism between X"I~#X* and X^#X'* can

be chosen of the form fptycp* where : Xt —» X^ and p* : X* —¥ X'*

are isomorphisms. Therefore, the set of isomorphy classes of based piecewise

linear E-manifolds of type X* with Z?2 b is in bijection to the set of
isomorphy classes of based piecewise linear E-manifolds with b and

Z?4 0. The same goes for differentiate manifolds of type X*, if X* is not

diffeomorphic to X*#X, X an exotic 8-sphere. Otherwise, we have to divide

by the action of $8. This observation together with Corollary 4.9 settles

Theorem 2.4.

5. Structure of the group AutoL(#f=10S2 x S5))/ AutoL(#f=1(5'2 x D6))

In this section we prove that AutoL(#f=1(S2 x S5)) / AutoL(#f==1(5'2 x Z)6))
is an abelian group which is, moreover, isomorphic to the group FL^ defined
before. This result should be of some independent interest, especially because

the group FL^ is quite well understood by Haefliger's work. For b 1, we
refer to [20] for more specific information.

We begin with the elementary

Lemma 5.1. Let k G AutoL(#f=1(5'2 x S5)) be a commutator. Then k
extends to an automorphism of #bi=l{S2 x D6).

Proof For the proof, we depict #f=1(S'2 x S5) as follows: Let Vh
i 1 be b copies of S2 x D6, and we join Vt and Vi+i by a tube
Ti [-1,1] xD1, i 1,..., b— 1. The result is a manifold W whose boundary
is isomorphic to #f=1(S2 x S5). We make the following normalizations: Write
dVi as (S2 x Df) U (S2 x Dl_), let nt and s-L be the centers of D\ and
Dl_, respectively, and set Sf := S2 x m and SL := S2 x si9 i 1

Choose furthermore points et / wt in (S2 x Df) ft (S2 x D*_), i — 1,..., b,
and suppose that {—1} x D1 c 7) is attached to a disc around wt in dVi
and {1} x D7 c Tt to a disc around ei+\ in dVi+u i 1,...,Z?- 1. Set

T — Uf=/ Ti-

Now, let k fo g of-1O g~lwithG AutoL(#f=1(52 x S5)). As

H2(h, Z) is the identity for every element h e AutgL (#f=, (S2 x S'5)) and 5''±,
i « 1 both represent the same basis for Z), h is isotopic to a

map h' which satisfies either assumption (A) or (B) below.
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(A) : h' is trivial on a tubular neighborhood of Sf which contains
(S2 x£f+)\Int(r), i 1

(B) : h! is trivial on a tubular neighborhood of Sl_ which contains
{S2 x DL) \ Int (T), i=l,...,b.

Next, replace / by an isotopic map f satisfying (A), and g by an isotopic

map g' satisfying (B). Then k' is isotopic to f o g' o//_1 o g'~l. The

map k' is the identity outside Int (dT). It is, furthermore, the identity on a

collar of ({—1} U {1>) x S6 in Rt := [-1,1] x S6 C dTi9 i 1,..., b - 1.

Let k[ be the restriction of k! to Rt, i — 1,..., b. We know that each

k[ is the identity on a collar of {—1,1} x S6 in Rf. Thus, we extend

every k[ to a PL automorphism kt of D1 x {-l}Ui?iUD7 x {1} S1

through idD7X{_i}.uzXx{i}. Now, by [27], Lemma 1.10, p. 8, kt extends to
an automorphism n-L of D8 D1 x [—1,1], i — 1 Thus, the maps
idy. and i ^ 1,... ,b, glue to an automorphism of #f=1(52 x D6) whose

restriction to the boundary is just k!.

This lemma shows that AutgL(#f=1(52 xD6)) is a normal subgroup of

Aut^^CS2 x S5)), and that Aut^L(#f=1(^2 x S5))/ Aut^L(#f=1(52 x D6))
is abelian. Moreover, in Section 4.3, we have already defined a set theoretic

bijection

ß: Aut^(#f=1(V x S5))/AutgL(#f=i(52 x D6)) —> FL,

Theorem 5.2. The map ß is a group isomorphism.

Proof. Since ß is bijective, we have to verify that ß is a homomorphism.
In order to do so, we will construct a group G together with surjective
homomorphisms

XI : g —> AutoL(#f=i(5'2 x Aut£L(#f=i(S2 x D6))

and

Xi: G —> FL&

such that X2 ß o Xi- This will clearly settle the claim.

Before we define G, we recall some constructions and conventions from
[11]. Let Ss {(xo,... ,xg) G R9 | Xq + • • • + xj 1} be the unit
sphere, write Ss D\ U Ds_, and let a : Ss —> Ss be the reflection at
S1 — D\ n Ds_, interchanging the Northern and the Southern hemispheres.

First, let Sb OSf, • • •,S5b) be a 'standard link' in S8 defined as follows: Fix
real numbers —1/2 < <zi <•••< < 1/2, and set
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5? := { Oo,... *9) G Ss I x6 x7 x8 0, x9 at }

We choose, furthermore, framings % : Sf x Z)3 —> S8 which extend over £>6,

such that Tj0ii± x £>3) C and cr o n 77 o (<j|^ x idDs), i 1,..., è.

Let be the resulting framed link in S8 with ± := /jj n£>±. Recall from

Section 1 of [11] that

1. Every framed link I of b five-dimensional spheres in Ss is isotopic to a

link I', such that either (A) V fb + or (B) lr F\D^_ — fb_.
2. If l\ satisfies (A) and l2 satisfies (B), then l\ + l2 is represented by the

link I with lr\D\ l2nD\ and / fl D*_ h n Ds_.

Note that, if we perform surgery along l°b, we get a manifold W W+ U W-
which is isomorphic to #f=10S2 x S6), and

b

W± := (D8± \ Int(Z°)) U ([J(Sj x
i= 1

is canonically isomorphic to x D6). For the rest of the proof, we will
use the description of #f=1(S2 x S5) as dW+ dW-. Set

G := { PL-maps f:S7\ Int (Zg) —» S7 \ Int (Zg) : /|b0Undary id } •

For every / G G, we define (p(f) : #f=1(S2 x S5) —» ^=i(S2 x S5), by extending

/ through the identity on \_\bi==l(Sj x D5). Similarly, define tp(f): S1 —> S7.

Obviously,

Xi : G —> AutJL(#f=i(S2 x S5))/AulSL(#f=i(S2 *
/ — tvCOl

is a surjective homomorphism.
Next, we associate to / G G an element X2(f) F FL^ as follows : First, we

define 11(f) := D\u^(f)Ds_ and the link l'(f) := Then we choose

a piecewise linear homeomorphism F: E(f) —^ S8 and set F(l'(f)).
We have checked before that the isotopy class of lF(f) does not depend on the
chosen homeomorphism, so that xi(f) '= Uf(/)] F FL^ is well defined. To see

that X2 ^ G —» FL^ is a homomorphism, let /,/' be in G. Choose extensions

ip- D+ —> D+ and iß : Ds_ —» Ds_ of ip(f) and f(f'), respectively. We then
define F: H(f) —» Ss as iß on D+ and as the identity on D*_ F' : H(f) —» S8

as the identity on D\ and (^V1 on Ds_, and F" : H(f' of) —» Ss as tß

on D\ and 0//)"1 on Ds_. Then the link lF(f) satisfies (B), the link lF>(f')
satisfies (A), and (2) above shows that [lF><(f' of)] [lF>(ff)] + [lF(f)].

Finally, for given / G G, we can perform surgery on H(f) along l'(f).
The result is W+ Ucp(f) Reading this backwards means nothing else but
ß(Xi.(f)) X2(f) and we are done.
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