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TORSION NUMBERS OF AUGMENTED GROUPS

WITH APPLICATIONS TO KNOTS AND LINKS

by Daniel S. Silver and Susan G. Williams*)

Dedicated to the memory of Arnold E. Ross

Abstract. Torsion and Betti numbers for knots are special cases of more general
invariants br and ßr, respectively, associated to a finitely generated group G and

epimorphism x : G -A Z. The sequence of Betti numbers is always periodic ; under mild
hypotheses about (G, x), the sequence br satisfies a linear homogeneous recurrence
relation with constant coefficients. Generally, br exhibits exponential growth rate.
However, again under mild hypotheses, the p -part of br has trivial growth for any
prime p. Applications to branched cover homology for knots and links are presented.

1. Introduction

A knot is a simple closed curve in the 3 -sphere S3. Knots are equivalent
if there is an orientation-preserving homeomorphism of S3 that carries one
into the other. Equivalent knots are regarded as the same. An invariant is

a well-defined quantity that depends only on a knot equivalence class. Two
knots for which some invariant differs are necessarily distinct.

Associated to any knot k and natural number r there is a compact, oriented
3-manifold Mr, the r-fold cyclic cover of S3 branched over k. A precise
definition can be found in [Li97] or [Ro76], for example. Topological invariants
of Mr are invariants of k. Two such invariants, the first Betti number ßr and
the order br of the torsion subgroup of H\ (Mr;Z), were first considered by
J. Alexander and G. Briggs [A128], [AB27] and by O. Zariski [Za32]. The
continuing interest in these invariants is witnessed by numerous papers (e.g.,
[Go72], [Me80], [We80], [Ri90] and [GS91]). We call br the rth torsion

*
First author partially supported by ÉGIDE at CMI, Université de Provence. Second author

partially supported by CNRS at Institut de Mathématiques de Luminy. Both authors partially
supported by NSF grant DMS-0071004.



318 D. S. SILVER AND S. G. WILLIAMS

number of k. We say that br is pure if the corresponding Betti number ßr
vanishes (equivalently, H\(Mr\Z) is a pure torsion group).

Betti numbers are known to be periodic in r, and they are relatively easy to

compute (see Proposition 2.2). A useful formula for pure torsion numbers was

given by R. Fox in [Fo56]. Although the proof given by Fox was insufficient,
a complete argument was given by C. Weber [We80]. Weber observed that
the problem of computing non-pure torsion numbers is "... une question plus
difficile ".

Torsion and Betti numbers for knots are a special case of a more general,

algebraic construction that depends only on an augmented group, consisting of
a finitely generated group G and a surjection x : G —ï Z. We define torsion
and Betti numbers in this general context. For a large class of augmented

groups, including those that correspond to knots, we provide a formula for all
torsion numbers, generalizing the formula of Fox. We prove that the sequence
of torsion numbers satisfies a linear recurrence relation.

Torsion numbers tend to grow quickly as their index r becomes large.
F. Gonzalez-Acuna and H. Short [GS91] and independently R. Riley [Ri90]
proved that the sequence of pure torsion numbers of any knot 1c has exponential
growth rate equal to the Mahler measure of the Alexander polynomial of k.
We improved upon this in [SWOO] by showing that the entire sequence br

grows at this rate and generalizing the result in a natural way for links. The

proofs in [SWOO] use a deep result about algebraic dynamical systems due to
D. Lind, K. Schmidt and T. Ward (Theorem 21.1 of [Sc95]). Here we extend

such results for torsion numbers br associated to many augmented groups.
In contrast, we prove under suitable hypotheses that for any prime number p
the p-component of br (i.e., the largest power of p that divides br) grows
subexponentially. The proof relies on a p-adic version of Jensen's formula,

proven by G.R. Everest and B.Ni Fhlathüin [EF96], [Ev99]. As a corollary
we strengthen a theorem of C. Gordon [Go72] by proving that for any knot
the sequence of torsion numbers either is periodic or else displays infinitely
many prime numbers in the factorization of its terms.

In the final section we apply our techniques to the problem of computing
homology groups of branched cyclic covering spaces associated to knots and

links.
We are grateful to Dan Flath, Adam Sikora, Doug Lind and Hamish

Short for useful discussions. The University of Maryland, the Centre de

Mathématiques et Informatique in Marseille, and Institut de Mathématiques
de Luminy provided kind hospitality during the period of this work. Finally,
we thank the referees for helpful comments and suggestions.
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2. Augmented groups and torsion numbers

Torsion numbers for knots and links arise as a special case of a general

group-theoretical quantity described below. We see that many knot-theoretic

results remain valid in the broader context.

Let G be a finitely generated group and % : G Z any epimorphism. The

pair (G, x) is called an augmented group. Two augmented groups, (Gi,xi)
and (G2, X2) are equivalent if there exists an isomorphism <fi: G\ —>• G2 such

that Xi0(t> X\'
For any augmented group (G, x) >

the abelianization of ker x is a module

M over the ring 721 Z[t,t~l] of Laurent polynomials. Since 721 is

Noetherian, A4 is finitely generated, expressible as

(2.1) f,
where A is an N x M-matrix over 721, for some positive integers M,N. By
adjoining zero columns if needed, we can assume that M > N.

For any natural number r, we define Mr to be the quotient module

Mr M[{f - 1 )M

It is clear that Mr is finitely generated as an abelian group. Hence it
decomposes as

Mr 1?' © TMr
where TMr denotes the torsion subgroup of Mr. We define the rth torsion
number of (G, x) to be the order br of TMr. We say that br is pure if the

Betti number ßr vanishes.

Clearly br and ßr depend only on the module M, which in turn depends

only on the equivalence class of (G,x)- Although our motivation is group-
theoretic, we note that torsion and Betti numbers can be associated as above

to any finitely generated 1Z1 -module M. The difference is a matter only
of perspective, for it can be easily seen that any such M arises from an

augmented group (G,x)-
The elementary ideals Et of M form a sequence of invariants of (G, x) •

The ideal Et is generated by the (.N - î) x (N - i) minors of the matrix A of
(2.1). Since 7Z\ is a unique factorization domain, each Et is contained in a

unique minimal principal ideal; a generator is the ith characteristic polynomial
Ai(t) of (G, x), well defined up to multiplication by units in TZim We are
primarily interested in A0(0, which we abbreviate by A.

An important class of augmented groups arises in knot theory. For any
knot k in the 3-sphere S3 the fundamental group G 7Ti(S3 - k) is finitely



320 D. S. SILVER AND S. G. WILLIAMS

presented and has infinite cyclic abelianization. Abelianization provides a

surjection G —y Z. (More precisely, there are two choices. The ambiguity,
which is harmless, can be eliminated by orienting the knot.) The module

M is isomorphic to the first homology group of the infinite cyclic cover of
S3 — k, and it has a presentation marix A that is square (that is, M N).
The quotient module Mr is isomorphic to the homology group H\(Mn Z)
of the r-fold cyclic cover Mr of S3 branched over k. The 0 th characteristic

polynomial À is commonly called the Alexander polynomial of k. (See [Li97]
or [Ro76].)

Definition 2.1. The cyclotomic order 7 7(A) is the least common
multiple of those positive integers d such that the dih cyclotomic polynomial
<D^ divides À. If no cyclotomic polynomial divides À then 7=1.

PROPOSITION 2.2 (cf. Theorem 4.2 of [Go72]). For any augmented group
(G, x) the sequence {ßr} of Betti numbers satisfies ßr-\--y ßr> where 7 is

the cyclotomic order of A.

Proof We adapt an argument of D. W. Sumners that appears in [Go72].
Since II CR, t~l] is a principal ideal domain, the tensor product A40zC

decomposes as a direct sum ®"=ln/(77), for some elements 77 G II such that

77 I 7ri+i, 1 < i < n. (For 0 < i < n, the product 717 • • • %n-i is the same as

Ai up to multiplication by units in II.) Likewise,

Mr<S>zCm e^n/fa, f -1).
Each factor 11/(77) can be expressed as 0;TI/((r — aj)e(aj)), where e(afi are

positive integers, aj ranging over the distinct roots of 77. Since

(t - a) if ar 1,

we see that

II otherwise,

ßr dime Mr 0z c ^ U,
i= 1

rthwhere lt is the number of distinct roots of 77 that are also rth roots of unity.
Hence ßr —- ßpf ,r) 5

and so ßr-^-^ — ß(*y— ßin* 1—I

In view of Proposition 2.2 it is natural to consider a subsequence of
torsion numbers bn such that ßn is constant. We prove that {brk} is a

division sequence in the sense that brk divides bn whenever 77 divides 7.
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LEMMA 2.3. Assume that f: Af -» AP is an epimorphism of finitely
generated modules over a PID. If Af and Af have the same rank, then <$>

restricts to an epimorphism f : TAf —> TAP of torsion submodules.

Proof. It is clear that f induces an epimorphism f: Af/TAf —> AP/TAP.
Since Af and AP have the same rank, f is an isomorphism. If y G TAP-

then there exists an element x G AT such that fix) y. If x £ TAf, then a

represents a nontrivial element of the kernel of f, a contradiction. Thus ,fi>

restricts to an epimorphism of torsion submodules.

PROPOSITION 2.4. Let (G,x) be an augmented group. If brjc is a

subsequence of torsion numbers for which the corresponding Betti numbers

ßrk are constant, then {brk} is a division sequence.

Proof. If r divides s, then clearly there exists a surjection f: A4S —» A4r.
Since ßr ßs, Lemma 2.3 implies that f induces a surjection of torsion
submodules, and consequently br divides bs.

Given an augmented group (G, x) such that A4 has a square matrix
presentation (2.1), the pure torsion numbers br can be computed by the

following formula familiar to knot theorists.

PROPOSITION 2.5. Assume that (G, x) is an augmented group such that
A4 has a square matrix presentation. If br is a pure torsion number, then it
is equal to the absolute value of

(2.2) n*o.
e=i

The quantity (2.2) is equal to the resultant Res(A,tr - 1). In general, if
fit) aotn-{ \-an-it+an and g(t) botm-\ \-bm-it+bm are polynomials
with integer coefficients and zeros au an and ßu ßm, respectively,
then the resultant of / and g is

Res(/, g) - (a%bn0) - ßj)»< f] - (-1)^
ij i j

Clearly, Res(/i/2,#) Res(/!,g)Res(/2)g) and Res(/,g) (-l)mnRes(5,/).
The resultant has an alternative definition as the determinant of a certain
matrix formed from the coefficients of / and g (cf. [La65]). In particular, the
resultant of integer polynomials is always an integer.
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In the case that G is a knot group, formula (2.2) was given by R. Fox
[Fo56]. A complete proof is contained in [We80]. The proof of Proposition
2.5 can be fashioned along similar lines. We will prove a more general result
in Section 3.

In [Le33] D. H. Lehmer investigated resultants Res(/, tr — 1), where

fit) £ Z[t]. As he observed, it follows from a theorem of Lagrange that the

sequence {Res(/, f — 1)} satisfies a linear homogeneous recurrence relation
in r with constant coefficients.

The general linear recurrence relation is easy to find. Assume that

fit) — codH+ Cd-\t + Cd has roots aj,..., a^. Form the polynomials

/o it)=t-l,
d

au) —fit) ny - ai),
Cr\ J- -Lc°

d-1

flit) P it-OLiOtj)

i>j= 1

fd.it) t - aia2 ad t - {-l)d—
co

It is not necessary to find the roots of / in order to determine /o,... Jd- The

coefficients of these polynomials are integers obtained rationally in terms of the

coefficients of /. Lehmer gives explicit formulas for d <6 ([Le33], p. 472-3).
If tm + A\tm~l + • • • + Am is the least common multiple of /0,... ,/j, then

Res(/, f— 1), which we abbreviate by R(/, r), satisfies the homogeneous linear

recurrence with characteristic polynomial pit) — ctm+CQ~lAitm~l-{ 1-Am ;

that is,

(2.3) r + m)+ c~xAxR(f, r- 1) + • • • + AmR(f, 0.

It is easy to see that the degree m of the characteristic equation (2.3) is

not greater than 2d. These facts were rediscovered by W. Stevens [StOO].

Stevens proved that when / is a reciprocal polynomial (that is, q c^-i for
/ 0,1,..., d) this degree m can be bounded from above by 3^/2.

We remark that the sign of Res(/, f — 1) is either constant or alternating.
For in the product

Res(/, f -1) Cq t|(a(r - 1),
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a pair of conjugate complex roots contributes a factor (o[ — 1 )(a[ — 1)

I a-" - 112, while the real factors have constant or alternating sign. It follows that

|Res(/, f — 1)| satisfies a linear recurrence of the same order as Res(/, f— 1) ;

in the alternating sign case, simply modify the characteristic polynomial by

changing the sign of alternate terms.

Example 2.6. The Alexander polynomial of the figure-eight knot (the knot

4i in tables) is A(t) » t2 — 3t + 1. Since neither root has modulus one, all of
the torsion numbers of k are pure. The polynomials / are fo(t) fz(t) t — 1

and fi (t) A(r). The least common multiple is t3 — 4t2 + At — 1, and hence

br satisfies: Z?r+3 - 4Z?r+2 + 4Z?r+i — br 0. Using the initial conditions
Z?0 0, 15 Z?2 — 5, other values can now be quickly computed.

The torsion numbers for the figure-eight knot produce some surprisingly
large prime factors. According to calculations done with Maple, &1301 is the

square of a prime with 285 digits.
Lehmer, who considered this example in [Le33], albeit for much smaller

values of r, was interested in producing new prime numbers. He observed that
the factors of R(f, r) satisfy a severe arithmetical constraint, and he proposed
that if R(/, r) grows with a relatively small exponential growth rate, then
these numbers will likely display large prime factors. Lehmer did not give

any proof of the assertion about prime factors, but rather used it heuristically.
A survey of Lehmer's efforts together with new results in these directions can
be found in [EEW00].

Definition 2.7. Assume that
d

fit) C()td + • • • + Cd-\t + Cd Co ~ Oii)

i= 1

is a polynomial with complex coefficients, c0 7^ 0. The Mahler measure of/
is

d

M(f) |c0| J|max{l,\at\}
i= 1

The empty product is assumed to be 1, so that the Mahler measure of a

nonzero constant polynomial f(t) c0 is |c0|. By convention, the Mahler
measure of the zero polynomial is zero.

Clearly, Mahler measure is multiplicative; that is, M(fg) M(f)M(g),
f°r f->9 £ CM - The following is proved in [GS91] and [Ri90]. We sketch the
argument.
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PROPOSITION 2.8. Let f be a polynomial with integer coefficients. The

subsequence R(f, rf) of nonvanishing resultants has exponential growth rate

M(f) ; that is,

lim |Res(/,f — l)|I/rt=M(/).
rj.—> oo

Sketch of proof Let f{t) co^ 4 + Q-i* -f q. Assume that cq 7^ 0

and that cui,..., otd (not necessarily distinct) are the roots of /. Then

|Res(/,fr- l)|1/r IcoiniA" 1 l'/r-
i — 1

The condition that the resultant does not vanish is equivalent to the statement
that no root is an rth root of unity. Consider the subsequence of natural

integers r for which this is the case. Note that if |az-| < 1, then the factor
I of — 1|1/V converges to 1 as r goes to infinity. On the other hand, if |a/| > 1,

then for sufficiently large r we have

\\«X < 1 < \a" - 1| < |a/|r + 1 < 2|a/|r.

Taking rth roots we see that \a\ — l|1//r converges to \a>i\.

When some root lies on the unit circle the nonzero values of | a\ — 11

can fluctuate wildly. In this case the analysis is more subtle. Gonzalez-Acuna
and Short use results of A. Baker [Ba77] and A.O. Gelfond [Ge35] to obtain

estimates. In [GS91] it is shown that if |o£| 1, then

Cexp{-(logr)6} < I a- - 1| < 2,

where C is a positive constant that depends only on /. As in the case that

\ai\ < 1 we have that \a\ — l|^r converges to 1.

The conclusion of Proposition 2.8 follows.

The following is immediate from Propositions 2.8 and 2.5.

COROLLARY 2.9. Assume that the finitely generated 1Z\ -module M has a

square matrix presentation. Then the subsequence of {br} consisting of pure
torsion numbers has exponential growth rate equal to M(A).

We can extend the conclusion of Proposition 2.8 to the entire sequence of
resultants by using results from the theory of algebraic dynamical systems.

Only the essential elements of the theory are sketched below. Readers

unfamiliar with dynamical systems might refer to [EW99].
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In brief, to a finitely generated 1Z\ -module we associate a compact space

and a homeomorphism a from the space to itself. The fixed points of ar form

a closed subspace consisting of exactly br connected components. Topological

techniques are available to compute the exponential growth rate of br, and it
coincides with M(A).

Theorem 2.10. Assume that the finitely generated 1Z\ -module M either

(i) has a square presentation matrix; or (ii) is torsion-free as an abelian

group. Then the sequence {br} of torsion numbers has exponential growth

rate equal to M(A).

Proof Let MA denote the Pontryagin dual Hom(jV4,T); that is, the

topological group of homomorphisms p from M to the additive circle group
T R/Z. Here M has the discrete topology, and MA the compact-open

topology. Multiplication by t in A4 induces a homeomorhism a of MA
defined by <j(p){a) pita), for any p G MA and all a £ M. The dual of

Mr — Mj(tr - 1 )M is the subspace Fix(crr) {p £ MA | arp p}, the set

of points of MA with period r.
Since Mr — ®TMr* the dual MA is homeomorphic to T^r xTMr.

This follows from two facts : ZA is isomorphic to T ; and AA is isomorphic
to A for any finite abelian group. Hence the number of connected components
of MA is equal to the cardinality of TMr, which by definition is the torsion
number br. Each component is a torus of dimension ßr, a beautiful fact but

one that we will not use here.

The number of connected components of MA is the same as the number

Nr of connected components of Fix(crr). Theorem 21.1(3) of [Sc95] states

that the exponential growth rate of Nr is equal to the topological entropy
of a. (The proof of this deep result uses a definition of topological entropy
in terms of separating sets. For an elementary discussion of the theorem see

[EW99].)

Further, if M has a presentation (2.1) with square matrix A, then the

topological entropy of a is equal to M(A). (See Example 18.7(1) of [Sc95].)
Thus if the hypothesis (i) is satisfied, then we are done.

If M is torsion-free as an abelian group, then again the topological entropy
of a is equal to M(A) by Lemma 17.6 of [Sc95].

The hypotheses of Theorem 2.10 cannot be dropped, as the following
example illustrates.
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Example 2.11. Consider the augmented group (G, %) such that

G (x, a I x~2a2xa~6xa2, x~3axa~4xa4xa~l),

and x: G -A Z maps 1 and 0. A straightforward calculation shows

that M =1Z\/(2/, (7— 1)/), where f(t) — t2—3t+1. The Alexander polynomial
A is gcd(2/, (t— 1)/) /, and it has Mahler measure greater than 1. However,
the topological entropy of the homeomorphism a is zero by Corollary 18.5 |

of [Sc95]. As in the proof of the theorem above, it follows that the torsion J

numbers br have trivial exponential growth rate; that is, limsup^^ blJr — 1. |

3. Extended Fox formula and recurrence

Let (G, x) be an augmented group, and A the N x M presentation matrix
for the 7^i-module M as in (2.1). For any positive integer r we can obtain a

presentation matrix for the finitely generated abelian group Mr by replacing
each entry q(t) of A by the r x r block q(Cr), where Cr is the companion
matrix of f — 1,

Cr

/0 1 0

0 0 1

0 0 0

\l 0 0

°\
0

1

0 /

We call the resulting rN x rM matrix A(Cr). The proof is not difficult. The

torsion number br is equal to the absolute value of the product of the nonzero

elementary divisors of A(Cr).
Assume first that M is a cyclic module. Then A is the lxl matrix

(A(0), and the r x r matrix (A(Cr)) presents Mr. The Betti number ßr
is the number of zeros of A that are rth roots of unity. When it vanishes

the matrix (A(Cr)) is nonsingular. Then all elementary divisors of the matrix

are nonzero, and their product is equal (up to sign) to the product of the

eigenvalues, which is the determinant. Fox's formula (Proposition 2.5) follows

by choosing a basis for Cr that diagonalizes the companion matrix Cr ; we
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then see that the eigenvalues of À(Cr) are A(Q, where ranges over the rth

roots of unity. In general, ßr is equal to

s ^2 deg®d ^2
d\r d\r

0</|A IA

where Oj is, as before, the dth cyclotomic polynomial, and f is Euler's phi
function. We appeal to the following result, a special case of Theorem 2.1

of [MM82].

Lemma 3.1. Let A be an integral rxr matrix with rank r- s. Suppose

that R is an integral s x r matrix with an s x s minor invertible over Z such

that RA 0 and ART — 0 (where RT denotes the transpose matrix). Then

the product of the nonzero eigenvalues of A is equal to ± detC&R7) times the

product of the nonzero elementary divisors of A.

Example 3.2. Suppose that we have a factorization tr — I OAF in Z[t].
Set A O(CV). Then we can construct a matrix R satisfying the hypotheses

of Lemma 3.1. We regard 7Z\/(tr — 1) as a free abelian group with generators
1, tr~l. Then the rows of A represent the polynomials O, /O,..., tr_10
(modulo f — 1). The rank of A is r — s, where s degO. We take R to
be the s x r matrix with rows representing T1, AF,... ,T-lxF. Consider first
the product RA. Regarding the product of the ith row of R with A as a

linear combination of the rows of A, we see that it represents the polynomial
f~lx¥ .0 0 (modulo f - 1). Hence RA 0.

The columns of A represent the polynomials 0(£-1), t®(t~l),...,
C-1d>(£-1), and so the ith column of ARf represents 0(r_1) • tix¥(t)

(modulo f — 1 Since O is a product of cyclotomic polynomials, we have
tde% °0(£_1) — ±0(0. (A cyclotomic polynomial has this property since its
set of roots is preserved by inversion, and its leading and constant coefficients
are ±1.) So ARf is also zero.

Since the degree of ^ is less than r for / < s, the s x s minor consisting
of the first s columns of R is upper triangular. The diagonal entries are the

constant term of x¥, which must be ±1. Hence this minor is invertible
over Z.

The matrix A presents - 1) 1Zi/(0), a free abelian group, so
the product of its elementary divisors is 1. Lemma 3.1 implies that det(RRf)
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is equal up to sign to the product of the nonzero eigenvalues of <t>(C, ; that is,

(3.1) det (RRt)±I]O(0-
C=1

<t>(C)A0

THEOREM 3.3. Suppose that the 1Z\ -module A4 is isomorphic to 7Z\/(A).
For any positive integer r, let <D be the product of the distinct cyclotomic
polynomials such that d \ r and | A. Then

a2» br=I n (£)(o
C=1

A(C)7^0

Remarks 3.4.

(i) We follow the convention that if no cyclotomic polynomial divides A,
then O 1. Clearly br is a pure torsion number if and only if O 1. In
this case (3.2) reduces to Fox's formula (2.2).

(ii) See [Sa95] and [HS97] for more calculations and estimations of torsion
numbers br arising from link groups.

Proof of Theorem 3.3. We write A as <f> • g, for some g G Z [t\. The

matrix A(Cr), which presents Mr — 7Z\/(Afr — I), has rank r — degO. The

rank is the same as that of 0(Cr). Consider the matrix R of Example 3.2. We

have RA(Cr) (R®(Cr))g(Cr) 0 and also A(Cr)RT (0(Cr)^(Cr))Rr
g(Cr)(0(Cr)Rr) 0. Formula (3.2) now follows from Lemma 3.1 together
with (3.1).

If AT is a direct sum of cyclic modules, then Theorem 3.3 oan be applied
to each summand and the terms produced by (3.2) multiplied together in order

to compute br.
When A4 is not necessarily a direct sum of cyclic modules, but it is

torsion-free as an abelian group, then it is "virtually" a direct sum of cyclic
modules by the following lemma, which appears as Lemma 9.1 in [Sc95]. The

main idea of the proof is to consider the natural injection of A4 ^ A4®zQ,
and use the fact that A4 ®z Q is a finitely generated module over the ring
Qt^1], which is a principal ideal domain.

We recall that a polynomial in Z[t\ is said to be primitive if the only
constants that divide it are ± 1.
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LEMMA 3.5. Assume that A4 is a finitely generated 1Z\ -module that

is torsion-free as an abelian group. Then there exist primitive polynomials

7Ti,...,7Tn G Z[t] such that TTi | 7T/+i for all i 1,..., /2 — 1, and an

1Z\ -module injection i: A4 —> AT 7£i/(7tt) 0 ••• 0 7^i/(7rn) swc/z /to
A4 ' / z(A4 is finite.

For notational convenience we identify A4 with its image in A4'. Consider

the mappings p: A4 -> A4 and p! : AC -y A4' given by a (f - l)fl.
Clearly ker /i is a submodule of ker p!. We define «(r) to be the
index |ker p! : ker p\. Let b'r denote the order of the torsion subgroup of
A4'jif — \)A4'. The proof of the following theorem extends techniques
of [We80].

THEOREM 3.6. If the finitely generated 1Z\-module A4 is torsion-free as

an abelian group, then for any positive integer r,

bf
(3.3) br —

n{r)

Moreover, if 7 is the cyclotomic order of A, then n(r + 7) k(t) for all r.

Lemma 3.7. Let 0 —y A\ —> A2 —> • • • —> Am —y 0 be an exact sequence
of finite abelian groups. Then

I Aeven | | A0dd |
•

Lemma 3.7 is easily proved using induction on m. We leave the details
to the reader.

Proof of Theorem 3.6. Consider the finite quotient p: A4' -y A4' /A4 and
mapping p: A4'/A4 -y A4'jA4 given by a i-a (f — l)a. The exact diagram

-> A4 —î— A4' ——y A4'/A4 > 0

-> A4 —-—y A4' —A4' jA4 y 0

induces a second exact diagram
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0

J

ker p ¥ 0

0

> 0

1

coker ß > 0

i
0

and hence by the Snake Lemma we obtain a long exact sequence

(3.4) 0 -A ker p A ker p' A ker ß A Mr A M'r A coker ß -a 0.

Let TMr and TM'r be the torsion subgroups of Mr and M'r, respectively.
Since ker ß is finite, its image under the connecting homomorphism d is

contained in TMr. Also, ~i maps TMr into TM'r. Hence we have an
induced sequence

(3.5) 0 -A ker p A ker p'A ker p ATMrÀ TM'r A coker /J —> 0.

It is not difficult to verify that (3.5) is exact. The only nonobvious thing to
check is that the kernel of p is contained in the image of Ï. To see this,

assume that p(y) 0. By the exactness of (3.4) there exists an element

x e Mr such that l(x) y. If x ^ TMr, then the multiples of x are distinct

m Mr and each maps by ~i into the finite group TM'r, contradicting the fact

that ker 1 d(ker ~p) is finite.

The following sequence is exact.

(3.6) 0 -> ker p,f/i(ker p) -tkerjl -A TMr —A TM'r -A coker ~p 0.

Since M'r/Mr is finite, ker/I and coker ß have the same order.

Lemma 3.7 now completes the proof of (3.3), K(r) being the order of
ker p! fi{ker p).

0 y ker p —-—> ker p' —-—>

0 > M ——> M'

0 h M —-—> M'

0 > Mr —-—M'r
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The modules M and M! have characteristic polynomial 7rn. Since A4

embeds in A4! with finite index, a prime polynomial annihilates a nonzero
element of A4 if and only if it annihilates a nonzero element of A4'. Such

polynomials are exactly the prime divisors of ixn. It follows that ker fi and

ker p! are both periodic, with period equal to the least common multiple 7
of the positive integers d such that divides A. Hence the same is true
for K,(r).

THEOREM 3.8. Assume that the finitely generated lZ\-module A4 is a
direct sum of cyclic modules or is torsion free as an abelian group. Then the

set of torsion numbers br satisfies a linear homogeneous recurrence relation
with constant coefficients.

Proof. Write

i=(rK) •«.
deD

where D — {d : | A}, and let 7 be the cyclotomic order of A. We

will show that for each R e {0,... ,7 — 1}, the subsequence of br with r
congruent to R modulo 7 satisfies

(3.7) br CR r^Res^, f - 1)|,

where Cr, Mr are constants,

MrJ2^ed-V<M J2 ~ ^ '

dD deD
d\R

As we saw in section 2, the sequence |Res - 1)| satisfies a linear
homogeneous recurrence relation with characteristic polynomial p of degree at most
2deg 3

• We may normalize p to be monic, p(t) f]/? ~ A/)"', with A,
distinct. The general solution to this recurrence relation has the form V. ^/r)AJ,
where qjisa polynomial of degree less than n, (see [Br92], Theorem 7.2.2,
for example). Each of the sequences a'f> CRrM"\Res(q,tr -1)| satisfies
the recurrence relation given by 'p(t) ü// - It also satisfies the
recurrence relation given by P(t) f]/'7 - since divides P.
Because the powers of t occurring in P are all multiples of 7, the latter
recurrence relation also describes the sequence { which is composed of
the subsequences bR+jn 4+7«- We note that the degree of P is at most
7(M + l)2degs.
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First we consider the case when A4 is cyclic. Given R we set

<&

deD
d\R

By Theorem 3.3 we have

C=i
A(C)#0

nObHI^)
d£D

f- V

where
?d ~ 1

ed

if d I R,

if d\R.
For each d dividing R,

f - 1

ResfOj,
O )- n f - 1

<X>7u;)=0

n
Oj(cu)=0

n

®(0

(V- 1)(1 + d+ • • • + fr/

IV-1 r/d '

L<E>d(t) <0
3II

cd- .•m

where $ <t>/cC»^ and Q depends only on d and R. For e not
dividing R,

£r — 1 "I—r — 1

Res(<&d, I I
O 0(u;)

O,/(cj)=0

is constant for r congruent to R modulo 7, since d divides 7 v Finally,

Res(^' "~~ö~ ~ codeg<ï> n Gr- 1

'O(a) '

P(a)=0
V 7

where Co is the leading coefficient of g ; the expression can be rewritten as

CRes(g,£r — 1), where C depends only on R. Thus we can express br in
the desired form (3.7) for all r congruent to R modulo 7.

For the case when A4 is a direct sum of cyclic modules 7£i/(7Ti) ® • • • ©

T^-i/fc) we apply the above result to each summand and use the facts that

A 717 717 and br is the product of the torsion numbers of the summands

to see that equation (3.7) still holds. Finally, if A4 is torsion free as an abelian

group, we use Theorem 3.6.
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4. Prime parts of torsion numbers

We recall Jensen's formula, a short argument for which can be found

in [Y086].

LEMMA 4.1 [Jensen's formula]. For any complex number a,

f log \a - e2irie\dO logmax{l, |a|}
Jo

By Lemma 4.1 the Mahler measure M(f) of a nonzero polynomial with

complex coefficients can be computed as

exp [log \f(e27r
Jo

This observation motivated the definition of Mahler measure for polynomials
in several variables. (See [B08I] or [EW99], for example.)

In [EF96], [Ev99] G.R. Everest and B.Ni Fhlathuin proved a p-adic
analogue of Jensen's formula, which we describe. Assume that a is an

algebraic integer lying in a finite extension K of Q. For every prime p
there is a /?-adic absolute value |-| the usual Archimedean absolute value

corresponding to 00. We recall the definition (see [La65] for more details) : If
p is a prime number, then \prm/n\p 1///, where r is an integer, and m,n
are nonzero integers that are not divisible by p. By convention, |0| 0.
Each \-\p extends to an absolute value \-\v on K. Let Qv denote the smallest
field which is algebraically closed and complete with respect to |-|v. Let Tv
denote the closure of the group of all roots of unity, which is in general
locally compact. Note that if p — 00, then C and Tv T. Everest
and Fhlathuin define

Mjv(t -a) exp f log |t-a\ dp exp lim - log |£ -Jt r->00 y L'J ^=1
Here J denotes the Shnirelman integral, given by the limit of sums at the

right, where one skips over the undefined summands. The above integral exists
even if a G Tv, in which case it can be shown to be zero. Moreover, one has

(4T) / log \ t Oi\vdp logmax{ 1, |a| }
JTV

which Everest and Fhlathuin refer to as a p-adic analogue of Jensen's formula.
Recall that denotes the p-component of br, the largest power of p

that divides br. The content of / G Z[t] is the greatest common divisor of
the coefficients. Using (4.1) we will prove
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THEOREM 4.2. Let (G, x) be an augmented group, and let p be a prime.

(i) If A4 has a square matrix presentation and A(t) 0, then the sequence

{K } of pure torsion numbers satisfies

lim (b(f))l^rk (content A)^
r^-^oo k

(ii) If A4 is a direct sum of cyclic modules, then the sequence of all torsion
numbers satisfies

lim (Z?^)1//r (content A)^
r—>- oo

(iii) If A4 is torsion free as an abelian group, then

lim (b^)1^ 1.

/ m 0 0 0 •• —m \
—m m 0 0

0 —m m 0 •• 0

Example 4.3. For any positive integer ra, consider the augmented group
(G, x) where G is the Baumslag-Solitar group (x,y | ymx xym) and

x: G -» Z maps x 1 and y i-a 0. One verifies that M 1Z\/(m(t — 1)).
The quotient module A4r is isomorphic to Zr/ArZr, where

Ar

\ 0 0 • • • —m m /
The matrix is equivalent by elementary row and column operations to the

diagonal matrix

(m \

\ 0/
Hence A4r Z © (Z/m)r~l, and so br — mr~l for all r. Consequently,

lim (b^)l/m(p).

The Alexander polynomial of any knot is nonzero, and its coefficients

are relatively prime. Hence the following corollary is immediate from Theorem

4.2 (iii).
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COROLLARY 4.4. For any knot k and prime p,

lira (b{P))l/r 1.
r-ïoo

Theorem 2.10 and Corollary 4.4 imply that whenever the Alexander

polynomial of k has Mahler measure greater than 1, infinitely many distinct

primes occur in the factorization of the torsion numbers br. In other words, the

homology groups Hi(MnZ) display nontrivial p-torsion for infinitely many
primes p. Since the sequence {br} is a division sequence, the number of
prime factors of br is unbounded.

What about the case in which the Alexander polynomial of k has Mahler

measure equal to 1 The argument of Section 5.7 of [Go72] shows that
the number of prime factors remains unbounded as long as the Alexander

polynomial does not divide tM — I for any M. If it does divide, then the torsion
numbers br are periodic by Section 5.3 of [Go72] (see also Corollary 2.2 of
[SiWiOO]). Hence we obtain

COROLLARY 4.5. For any knot, either the torsion numbers br are periodic
or else for any N > 0 there exists an r such that the factorization of br has

at least N distinct primes.

The proof of Theorem 4.2 requires the following lemma.

LEMMA 4.6. If f(t) cqF + • • • + e/7_ \ t + cn is a nonzero polynomial in
Z[t] with roots Ai • • • A„ (not necessarily distinct) in £lv, then

n

J J max {1, I content/1 „
i—l

Proof The argument that we present is found in [LW88]. Set aj Cj/c0
for 0 <j <n, so f(t) c0(tn -f a\tn~l H h an). Each aj is an elementary
symmetric function of the roots À;, namely the sum of products of roots taken

j at a time. Using the ultrametric property

\x + y\v~max{|x|^, I^IU

we see that if exactly k values of |A,|?i are greater than 1, then

n

m?x \aj\v W\v=IImaxP'!AflJ-
7=1
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But

max \a{j \v max{i. £1 Cn

Co
5 • • • 5

V CO
}

I content/| t
koL

Hence the lemma is proved.

Proof of Theorem 4.2. In case (i), the pure torsion number bn is equal

to I n a«>
C*=i

We have

\k\vI n a^o| koi? n iik-aa>
C*=i

v
Ct=i j= 1

where Co is the leading coefficient of A and Ai,... A„are its roots. Hence

\K\lJn\co\vYiflic-Aiy-

Cr*=i j= 1

so that

i"»l. 0exp( - J2 iog\(- a,;),
- '

;—1 'k >r,_.j= 1 Cr^=i

lim yrk \v

n fk.i,n exp / log I — A;^ dß,
i=\Jjv

which by equation (4.1) is equal to

|c0|„ tJmax{l, \Xj\v}

s
1

By Lemma 4.6 this is equal to |contentA|v. But for integers n we have
niP) \n\vl-

Now suppose fA is cyclic. As in the proof of Theorem 3.8, we let 7 be

the cyclotomic order of À and consider the subsequence of br with r in a

fixed congruence class modulo 7. Then starting with Theorem 3.3 we may
apply the argument above with A/O in place of A to show that the limit of
(\br\^)l/r along this subsequence is the p-component of the content of A/O.
But content is multiplicative and cyclotomic polynomials have content 1, so

the limit along all congruence classes is (content A)^\ The result is immediate

for direct sums of cyclic modules.

Finally, we can extend the result when M is torsion-free as an abelian

group using Theorem 3.6. But for this case the content of A is 1.
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5. Torsion numbers and links

A link is a finite collection / h U • • • U of pairwise disjoint knots in

the 3 -sphere. If a direction is chosen for each component U, then the link is

oriented. Equivalence for links, possibly oriented, is defined just as for knots.

The abelianization of the group G irfS3 — 1) is free abelian of rank

/i with generators t\,..., corresponding to oriented loops having linking
number one with corresponding components of /. When /i > 1 there are

infinitely many possible epimorphisms from G to the integers.

When I is oriented there is a natural choice for %, sending each generator
U to 1 G Z. In this way we associate to I an augmented group (G,x)- As

in the special case of a knot, M has a square presentation matrix, and it is

isomorphic to the first homology group of the infinite cyclic cover of S3 — I

corresponding to % • Again as in the case of a knot, there is a sequence of r-fold
cyclic covers Mr of S3 branched over /. However, H\(Mr;Z) is isomorphic to

M/(f~l-\ \-t+l)M rather than M/(f — 1)M (see [Sa79]). In the case of
a knot the two modules are well known to be isomorphic (see Remark 5.4(i)).

Motivated by these observations we make the following definitions. Let

Mr denote the quotient module MjvrM, where vr tr~l H \-t+\.

Definition 5T. Let (G,\) be an augmented group. The^rth reduced
torsion number br is the order of the torsion submodule TMr. The rth

reduced Betti number ßr is the rank of M.

As before, we may also speak of the reduced torsion and Betti numbers
of a finitely generated IZ\ -module M.

Many results of Section 2 apply to reduced torsion and Betti numbers
with only slight modification. For example, an argument similar to the proof
of Proposition 2.1 shows that ßr is the number of zeros of the Alexander
polynomial which are roots of unity and different from 1, each zero counted
as many times as it occurs in the elementary divisors A;/A;+1 ; hence ßr is
periodic in r. Also, when ßr 0 the reduced torsion number br is equal to
the absolute value of the resultant of A and vr.

Lemma 5.2. Assume that is an exact sequence
of finitely generated abelian groups. If A is finite, then the induced sequence

0->A4tbATC-iO
is also exact.
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Proof. The only thing to check is surjectivity of g. Since the alternating
sum of the ranks of A, B and C is zero and A is finite, the ranks of B and

C are equal. By Lemma 2.3 the homomorphism g maps TB onto TC.

PROPOSITION 5.3. Assume that the finitely generated IZ\-module A4 has

a square presentation matrix. If A(l) 7^ 0, then for every r,

(5.1) ßr-ßr, br=b-f,
dr

where Sr is a divisor of |A(1)|. Moreover, £r+7 ör, for all r, where 7 is

the cyclotomic order of A.

Proof. Consider the sequence

Mi ^Mr^Mr-ïO,
where vr is multiplication by vr tr~l + • • • + t + 1, and 1r is the natural

projection. It is easy to see that the sequence is exact. From it we obtain the

short exact sequence

0 —y Mi/ker vr -% Mr A Mr ~y 0.

Here vr also denotes the induced quotient homomorphism. Since A(l) 7^ 0,
the module Mi is finite and hence ßr — ßr. The order of M\ is |A(1)|,
and hence the order of M1 / ker vr is a divisor ör. The second statement of
(5.1) follows from Lemmas 5.2 and 3.7.

It remains to show that 5r has period 7. For this let 0 7^ a e M. The coset

ä G Mi is in the kernel of vr if and only if there exists b G M such that

vr(a — (t — 1 )b) 0. Clearly this is true if and only if V(lir){a — (t— 1 )b) — 0,
where (7, r) denotes the gcd of 7 and r. Hence the kernel of Vr is equal to
the kernel of z/(77), and the periodicity of Sr follows.

Remarks 5.4.

(i) If G is a knot group, then any two meridianal generators are conjugate.

Consequently M\ is trivial. Proposition 5.3 implies that in this case, the

torsion numbers br and br are equal for every r.

(ii) It is well known that for any oriented link I iMh of two components,

|A(1)| is equal to the absolute value of the linking number Lk(/i, Z2) - (See

Theorem 7.3.16 of [Ka96].)
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PROPOSITION 5.5. Let A4 be a finitely generated 1Z\ -module with a

square presentation matrix. Assume that A(t) (t — 1 )qg(t), with g(1) 0.

If p is a prime that does not divide g(l), then

Ä* o, b

for every k > 1.

The proof of Proposition 5.5 requires :

LEMMA 5.6. Let g(t) be a polynomial with integer coefficients, and

assume that p is a prime. If p does not divide g{ 1), then p does not

divide Res(g,f - 1) for any positive integer k.

Proof of Lemma 5.6. Assume that p does not divide g( 1). Recall that

On(0 denotes the nth cyclotomic polynomial. From the formula

d\n
d> 1

we easily derive

f 0 if d 1

\ q if d qk > 1, q prime

[ 1 other d.
k

Consequently, does not divide g for any k > 0, and so Res(g, tp —1)^0.
The module Li lZ\/{g, tpk - 1) has order |Res(g, tpk — 1)|, and it suffices to

prove that Li^z^/p is trivial. Now, LL^z^/p is isomorphic to the quotient
of the PID (Z/p)[t, t~l] by the ideal generated by the greatest common divisor
of g and tp — 1 in this ring. But tp — 1 (t— If in this ring, and t— 1 does

not divide g since p does not divide g( 1). So the gcd is 1, and 7~L®zZ/p
is trivial.

Proof ofProposition 5.5. Let k be any positive integer. Lemma 5.6 implies
that Res(g,tp — 1) / 0. Hence ßpk vanishes, and therefore ßpk is also zero.

By a result analagous to Proposition 2.5 and the multiplicative property of
resultants

bpk |Res(A, vpk)\ IRes(r — 1, ^)|^|Res(^ vpk)\ (pk)q\Res(g, vpk) \

By Lemma 5.6, p does not divide |Res(g,/^ - 1)|. Hence p does not divide

Res(g^i/pk), and so b^ pkq •
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COROLLARY 5.7. (i) Let Mr be the r-fold cyclic cover of S3 branched

over a knot. If r is a prime power pk, then the p-torsion submodule of
H\ (Mr; Z) is trivial

(ii) Let Mr be the r-fold cyclic cover S3 branched over a 2-component
link I — l\ U h- If r is a power of a prime that does not divide Lk(/i,/2),
then the p-torsion submodule of H\(Mr; Z) is trivial

Proof Statement (i) was proven in [Go78]. Here it follows from Proposition

5.5 together with the well-known fact that |A(1)| 1, whenever A is

the Alexander polynomial of a knot. The second statement is a consequence
of Proposition 5.5 and Remark 5.4 (ii).

PROPOSITION 5.8. Suppose that M is a finitely generated I2\ -module
that is isomorphic to IZi/(A). If A(t) (t— 1 )qg(t), where g{ 1) 0, then for
every positive integer r, there exists a positive integer 8'r such that

Moreover, 8'r+1 8'r, for all r, where y is the cyclotomic order of A.

Remarks 5.9.

(i) The order \T(1Z\/(g,vr))\ can be found using Proposition 5.3 and

Theorem 3.3.

(ii) When M is a direct sum of cyclic modules, br can again be found

by applying Proposition 5.5 to each summand. When M is not a direct sum

of cyclic modules but is torsion free as an abelian group, a result analogous

to Theorem 3.6 can be found by replacing f — 1 everywhere by vr in the

proof. As in Section 3, the torsion numbers br are then seen .to satisfy a

linear homogeneous recurrence relation.

Proof of Proposition 5.8. Consider the exact sequence

0 -A ker g —> IZ\/((t — 1 )q, vr) -A IL\j{ft — 1 )qg, vr) —^ IZ\/(#, ur) -a 0,

where the first homomorphism is inclusion, the second is multiplication by

g, and the third is the natural projection. The order of IZi/ift— l)q,vr) is

equal to |Res((£ — l)q, vr)\, which is equal to rq. The kernel of g is generated

by vr/fr, where fr is the greatest common divisor of g and vr. Notice that

/r+7 —fr, for all r. Lemmas 5.2 and 3.7 complete the proof.
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We conclude with a generalization of Corollary 5.7 (ii).
When (G, x) is the augmented group corresponding to a 2-component

link /, the epimorphism % factors through rj : G -> Gab — Z2. For any
finite-index subgroup AcZ2 there is a | Z2/A| -fold cover of S3 branched

over I corresponding to the map G Z2 -A Z2/A. The cover Mr is a special

case corresponding to the subgroup A generated by t\ — t2 > 4, 4 • We denote

the rank of H\(MA;Z) by /?A and the order \THi(Ma;Z)\ by bA.

THEOREM 5.10. Let I h U l2 be a link in S3. If p is a prime that does

not divide Lk(Zi,Z2), then ßA — 0 and b^ — 1 for any subgroup A C Z2 of
index pk, k > 1.

Proof Let be the kernel of rj. We consider the dual Af^, which is a

compact abelian group with a Z2 -action by automorphisms induced by conjugation

in G by t\ and t%. The automorphism induced by n G Z2 is denoted by
crn ; the automorphims induced by (1,0) and (0,1) are abbreviated by or and

(72, respectively. The dual MÇj can be identified with a subspace of FixA(cr)
{p G MÇj : crnp p for all n G A}. Details can be found in [SW00].

From the elementary ideals of M v a sequence of 2-variable Alexander
polynomials Ai(tut2) is defined; when i — 0, setting t\ — t2 — t recovers
Aft). By [Cr65], A0(OA2) annihilates Mv. Hence Ao(ot, cr2)/o 0 for all

p G Consequently, if anp p for all n G Z2 then 0 A0(a\,a2)p
A0(l, 1 )p A(l)p. Recall that A(l) Lk(Z1?Z2).

Let
Y {p: Mr/ Z/p : anp p for all n G A}

We identify Z/p with the group of pth roots of unity, so that Y is contained
in MÇj. It is a subspace of FixA(cr) invariant under the Z2-action, and it
contains a subspace isomorphic to Mv ®zZ/p. It suffices to prove that Y is
trivial.

Our hypothesis that p does not divide the linking number of k and Z2

implies that A04i,^) is not zero. Consequently, Y is a finite p-group and so
its order is a power of p. In view of the second paragraph, the hypothesis
also implies that the only point fixed by the Z2-action is trivial. But

m Ei°pi ElzV^stabil,
where the sums are taken over distinct orbits Op and stabilizers stab(p),
respectively. Each stabilizer contains A, and so |Zrf/stab(p)| is a divisor of
pk whenever p/0. Hence \Y\iscongruent to 1 mod p. Since |7| is a

power of p, the subspace Y must be trivial.



342

[A128]

[AB27]

[Ba77]

[B08I]

[Br92]

[Cr65]

[EEWOO]

[Ev99]

[EF96]

[EW99]

[Fo56]

[Ge35]

[Go72]

[Go78]

[GS91]

[Hi81]

[HS97]

[Ka96]
[La65]
[Le33]

[Li97]

D. S. SILVER AND S. G. WILLIAMS

REFERENCES

Alexander, J. W. Topological invariants of knots and links. Trans. Amer.
Math. Soc. 30 (1928), 275-306.

Alexander, J. W. and G. B. Briggs. On types of knotted curves. Ann. of
Math. 28 (1927), 562-586.

Baker, A. The theory of linear forms in logarithms. In: Transcendence
Theory: Advances and Applications (Proc., Univ. Cambridge,
Cambridge, 1976). Academic Press, London, 1977.

Boyd, D.W. Speculations concerning the range of Mahler's measure.
Canad. Math. Bull. 24 (1981), 453-469.

Brualdi, R. A. Introductory Combinatorics. 2nd ed., Prentice Hall, N.J.,
1992.

CROWELL, R. H. Torsion in link modules. J. Math. Mech. 14 (1965), 289-
298.

Einsiedler, M., G. R. Everest and T. Ward. Primes in sequences
associated to polynomials (after Lehmer). LMS J. Comput. Math.
3 (2000), 125-139.

Everest, G. R. On the elliptic analogue of Jensen's formula. J. London
Math. Soc. (2) 59 (1999), 21-36.

Everest, G. R. and B.Nl Fhlathuin. The elliptic Mahler measure. Math.
Proc. Cambridge Philos. Soc. 120 (1996), 13-25.

Everest, G. and T. Ward. Heights of Polynomials and Entropy in
Algebraic Dynamics. Springer-Verlag, London, 1999.

FOX, R. H. Free differential calculus. III. Subgroups. Ann. of Math. (2) 64
(1956), 407-419.

Gelfond, A. O. On the approximation of transcendental numbers by
algebraic numbers. Dokl. Akad. Nauk SSSR 2 (1935), 177-182.

GORDON, C. McA. Knots whose branched coverings have periodic homol¬

ogy. Trans. Amer. Math. Soc. 168 (1972), 357-370.
Some aspects of classical knot theory. In: Knot Theory (Proc. Plans-
sur-Bex, Switzerland, 1977), 1-60. Lecture Notes in Mathematics 685
(J. C. Hausmann). Springer-Verlag, Berlin, Heidelberg, New York,
1978.

Gonzalez-Acuna, F. and H. Short. Cyclic branched coverings of knots
and homology spheres. Rev. Mat. Univ. Complut. Madrid 4 (1991),
97-120.

HlLLMAN, J. A. Alexander Ideals of Links. Lecture Notes in Math. 895.
Springer-Verlag, Berlin, Heidelberg, New York, 1981.

HlLLMAN, J. A. and M. SAKUMA On the homology of finite abelian
coverings of links. Canad. Math. Bull. 40 (1997), 309-315.

Kawauchi, A. A Survey of Knot Theory. Birkhäuser, Basel, 1996.

LANG, S. Algebra. Addison-Wesley, Reading, 1971.

Lehmer, D. H. Factorization of certain cyclotomic functions. Ann. ofMath.
34 (1933), 461^-79.

LlCKORlSH, W. B .An Introduction to Knot Theory. Springer-Verlag, Berlin,
1997.



TORSION NUMBERS OF AUGMENTED GROUPS 343

[LW88] Lind, D. and T. Ward. Automorphisms of solenoids and p-adic entropy.
Ergod. Theory Dynam. Systems 8 (1988), 411-419.

[LSW90] Lind, D., K. Schmidt and T. Ward. Mahler measure and entropy for
commuting automorphisms of compact groups. Invent. Math. 101

(1990), 593-629.

[MM82] MAYBERRY, J. P. and K. MURASUGI. Torsion-groups of abelian coverings
of links. Trans. Amer. Math. Soc. 271 (1982), 143-173.

[Me80] Mehta, M. L. On a relation between torsion numbers and Alexander matrix
of a knot. Bull. Soc. Math. France 108 (1980), 81-94.

[Ne65] Neuwerth, L. P. Knot Groups. Princeton Univ. Press, Princeton (N.J.),
1965.

[Ri90] Riley, R. Growth of order of homology of cyclic branched covers of knots.
Bull. London Math. Soc. 22 (1990), 287-297.

[Ro76] ROLFSEN, D. Knots and Links. Publish or Perish, Berkeley, CA, 1976.

[Sa79] M. Sakuma. The homology groups of abelian coverings of links. Math.
Sem. Notes Kobe Univ. 7 (1979), 515-530.

[Sa95] Homology of abelian coverings of links and spatial graphs. Canad.
J. Math. 47 (1995), 201-224.

[Sc95] SCHMIDT, K. Dynamical Systems of Algebraic Origin. Birkhäuser Verlag,
Basel, 1995.

[SW00] Silver, D.S. and S.G. Williams. Mahler measure, links and homology
growth. Topology 41 (2002), 979-991.

[StOO] Stevens, W. H. Recursion formulas for some abelian knot invariants.
J. Knot Theory Ramifications 9 (2000), 413-422.

[We80] Weber, C. Sur une formule de R. H. Fox concernant l'homologie d'un
revêtement ramifié. L'Enseignement Math. (2) 25 (1980), 261-272.

[Yo86] Young, R. M. On Jensen's formula and log |l — eld\ dO. Amer. Math.
Monthly 93 (1986), 44-45.

[Za32] ZARISKI, O. On the topology of algebroid singularities. Amer. J. Math. 54
(1932), 453-465.

(Reçu le 2 mars 2002)

Daniel S. Silver
Susan G. Williams

Dept. of Mathematics and Statistics
Univ. of South Alabama
Mobile, AL 36688-0002
U.S.A.
e-mail : silver@jaguarl .usouthal.edu

Williams @jaguarl .usouthal.edu




	TORSION NUMBERS OF AUGMENTED GROUPS WITH APPLICATIONS TO KNOTS AND LINKS
	...
	1. Introduction
	2. Augmented groups and torsion numbers
	3. EXTENDED FOX FORMULA AND RECURRENCE
	4. Prime parts of torsion numbers
	5. Torsion numbers and links
	...


