
3. DEFORMATION THEORY

Objekttyp: Chapter

Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 48 (2002)

Heft 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

PDF erstellt am: 10.08.2024

Nutzungsbedingungen
Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in
Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss
Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung
übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot
zugänglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch



SEMISTABLE JO-SURFACES WITH ICOSAHEDRAL SYMMETRY 105

points. We can blow them up and blow down the six conics in the faces by

embedding the pencil in P7 x P1 with the linear system of cubics in P3 with

as base points the 12 singular points. We set

L — ZjZkZl •>

yt Zi(aaj+

We obtain a symmetric tetrahedron with g — h — 0.

We get nonsingular Del Pezzo surfaces by taking all by —1, and

ay a. Then / — 1, g —a2 and h a2 + 4. The points on the side of
the tetrahedron are given by

(zf + aziZj — zj)(—Zi + ciZiZj + zj) — {~Zi + (2 + a2) Z(zj — zj).

In particular, we obtain different smoothings of the same tetrahedron, those

embedded in P7 and others where the general fibre is embeddable in P3.

They belong to different 19-dimensional hypersurfaces in the 20-dimensional

subspace of the versai deformation whose general fibre is a smooth K3 -surface.

3. Deformation theory

3.1. Let X (JX; be a normal crossings surface with normalisation
X U Xi. The components of the double locus D are Dtj Xt n Xj. The
divisor Dt := IJA> is a normal crossings divisor in Xt. We set D IIA-

j
As X is locally a hypersurface in a 3-fold Af, its cotangent cohomology

sheaves vanish for i > 2 and

0 —» Tx —> 0MU —^ nx/M —^ fx —^ 0 •

There is a canonical isomorphism 7^ Od(X) and in particular, if X is
d-semistable, then 1% ^ Od [F2, Prop. 2.3].

3.2. LEMMA. There is an exact sequence

0 —— n.Gjf (logö) — Td° — 0.

Proof. This is a local computation. The sheaf ©M(logX) of vector fields
on Mwhich preserve Z1Z2Z30 is generated by the Restricted to
a component X,-: z, 0 we get sections of ©x,(logD,j. The restrictions to
different components satisfy the obvious compatibility condition.
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Sections of Tß are given by vector fields on each component, which vanish
in the triple points. We study 0X;.(l°g A) with the exact sequence

0 — 0X/(log A) —+ 0x; —> ®jNDij/Xi —- 0.

For a d-semistable K3 -surface X in (—l)-form,

H\DihNDlj/Xi) H\0.

Each component Xt is P2 blown up in k > 3 points and H2(SXi) 0,
A°(0X.) - max(0, S-2k), hx(eXi) max(0,2k - 8).

So H°(SXi) ~j~ 0 only in the case that k 3 and the double curve A is a

hexagon. We then call Xt a hexagonal component, or hexagon for short.

3.3. LEMMA [Fl, Cor. 3.5]. For a d-semistable K3-surface X of type III
in (-1)-form, H°(X, 7?) 0.

Proof We first describe the sections of H°(SXi) for a hexagonal
component. We blow up P2 in the vertices of the coordinate triangle. As basis

for the linear system of cubics we take the monomials given by black dots

in the picture below.

o

x2 # • *3

xl • • • x4
X0

3° # # ° 3
Z\ x6 X5 z3

A vector field i? on Xt comes from a vector field on P2 which vanishes

in the points blown up. We can give it homogeneously by Fa2Z2^ +
subject to the relation zi^- +Z2^ +£3^ 0. In the xj coordinates

we get

(a\ -b Ü2 + ß3 + (2«i + a%)xi ^ + (2^2 + A2^
-b (2(22 + a3)x3^ + (2^3 + ai)M~iyy-

+ (2(23 + &\)x5 + (2(2I + a3)x6^ -
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We restrict to the line (x/_i ixj) and take as generator of Tß\Dij the vector
field êj \(xj^ — x/_iQ~—x)- On the (xe :xi)-line $ (a2 — <23)^1 and on
the (x\ :x2)-line $ (a2 — fli)#2. The remaining coefficients 7? ßjßj are

found by cyclic permutation. They satisfy ßj ßj-\ + ßj+i. In particular, two
adjacent coefficients determine all the others and opposite coefficients add up
to zero.

Let 7? G H°(X, 7%) be a non-vanishing global section. As the dual graph
is a triangulation of S2 one has ]>T(6 — eß — 12, where is the number of
components of the double curve Z);. So there exist non-hexagonal components,
and 7? vanishes on them. Suppose vanishes on Xo and not on the adjacent
hexagon X\. We are going to look at the restriction of 1? to other components,
as illustrated in Figure 3.1.

Figure 3.1

Coefficients of a vector field

Let T — X0 fl Ii fl be a triple point. We know that 7? vanishes
on Xi ni0- If it also vanishes on Xx D X[, then it vanishes altogether,
contrary to the assumption. Therefore X[ is also hexagonal. Let 7? ß<ä0 on
£>11/ Xi nX[ c Xi. Considered on X[ the restriction of 7? is -ß times
the generator. The other triple point on Dn, involves a hexagon X'2, which
contains also the triple point Xx nZ2. Considered on X'2, the coefficient
of the restriction of 7? to is ß, to X'2 flXi it is -/?, so to X!2HX2
it is 2/3. Therefore on X2, t3 has adjacent coefficients 0, 2/3. Inductively
we find components X'n, Xn with the coefficient nß occurring. As there are
only finitely many components, this is impossible.
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k

3.4. Theorem. Let A (J be a d-semistable Resurface of type III
i= 1

in (—1 )-form, with k components. Then

dim H\X, t£)18,

dim#°(X, Tx)1,

dim H\X,Tj) k-1.

So dim T% k +19, dim Tf k— 1.

Proof. As the dual graph triangulates S'2 we have V — E + F 2,
where V k, the number of components of X, E is the number of
double curves and F is the number of triple points. Each double curve
contains two triple points, so F 2/3E, which makes E — 3k — 6.

A component A;, which is P2 blown up in öi points, has et 9 — (5/

double curves. Observe that J2iet — ^E. The exact sequence above gives
dim//1 (A, 7j) 2(5 - ef) + E 10V - 3£ k + 18.

We have A°(A, T%) A°(D, Od) 1 and A1 (A, T^1) A^D, Od) 1-*
1 - (E - 2F) A - 1.

3.5. Locally trivial deformations of a d-semistable A3-surface X are

unobstructed and fill up a codimension one smooth subspace of the base of
the versai deformation with tangent space Hl(X,T^). This means that every
equation of the base is divisible by the equation of this hypersurface. As

one obtains the base space as fibre of a map Tl —» T2, we look at the

map

Ob: Hl{Tx)xH°(T)
Let £ be a global generator of T^1. The existence of a second smooth

component (of dimension 20) follows, if one can show that the linear

map Ob( £): Hl(T:jj?) —» Hl(T^) is surjective. To describe it we

start with the map Ob( £): > T^1. Locally A is a hypersurface

given by an equation / 0 and elements of T£ come from ambient

vector fields satisfying $(/) cf. We can choose coordinates such

that £ acts as / *-* 1. Then Ob($,£) — c£. In the normal crossings

situation the map Ob( ,£) is surjective and we get an exact

sequence

o —><s ——>o.
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The kernel of the map Ob(. ,0: Hl(Tß) 0 can be characterised
k

in a different way ([F-S]). If X |J Xi occurs as central fibre in a degeneration
i= 1

A' —* 5, we define k line bundles Li := (9^(X/)|x. On a d-semistable X they

can be defined by

Li\Xi 0Xi(-Di),
Li\xJ 0Xj(Xin%), j + i,

with appropriate gluings, using the global section of Od(X). The bundle Li
defines a class £/ in

H\X, 0*x) « ker {//2(X, Z) - tf2(öx) C}

which therefore lies in Hl(Ql /r1), where Q1/rl are ^e Kähler differentials
modulo torsion [F2, Sect. 1]. The condition that Lt lifts to line bundles on a

locally trivial deformation with tangent vector ê G H1 (7J) is that ($,£/) 0

with the perfect pairing 0 Hl(Q}/rl) —» H2(öx) C [F2,

(2.10)]. The surjectivity of the map Ob( 5|) follows from the following
lemma.

3.6. LEMMA. The classes £; span a (k — I)-dimensional subspace of
H\X,Z).

Proof. We compute H2(X, Z) as the kernel of the map

0 H2(Xj,Z)0 H2(Dy,Z).
Each ß gives rise to a divisor aimDlm on X/, 1, ..with coefficients
satisfying alm + am/ 0 (and alm f 0 only if or i m). The relation

E 6 0 holds.

Let now X0& 0 G H2(X, Z). It gives rise to a divisor ßimDim

on Xi. If the classes D/m are independent in Z), then ßlm 0 for
all m.This condition is not satisfied if X/ is a hexagon. Then we can only
conclude that ßi,m-i+ ßi,m+i ßimWith the same argument as in the proof
of Theorem 3.3, illustrated by Figure 3.1, we infer that even in this case
ßim 0 for all m.

Therefore b, b} for all pairs (ij)suchthat X, n Xj 0. This implies
that ^2 bißis a multiple of 0£i D
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We summarise:

3.7. THEOREM [F2, (5.10)]. A d-semistable K3 -surface X of type III
is smoothable. Its versai base space is the union V\ U V2, where V\ is

a smooth hypersurface corresponding to locally trivial deformations of X,
which meets transversally a 20-dimensional smooth subspace V2, with V2\V\
parametrising smooth K3 -surfaces and V2 fl V\ locally trivial deformations
of X for which Öd(X) remains trivial.

3.8. Embedded deformations. We relate the above results to direct

computations with generators and relations for the cone over X, as for the

tetrahedron. The case of cones over non-singular varieties is treated in [S2].
We suppose that the affine cone C(X) over X is Cohen-Macaulay. The starting
point is the exact sequence

(3.1) 0 —¥ Tç{X) —* 0c«+i |c(X) —> Nc(X) —» TlC{X) —> 0,
which we shall relate to exact sequences of sheaves on X. We set U C(X)\0 ;

then 7r: U — X is a C* -bundle over X. For a reflexive sheaf T on C(X)
we have H®(C(X),T) HQ(U,T). All sheafs T considered here have a

natural C* -action, so decomposes into the direct sum of eigenspaces. In
particular, the degree 0 part is the sheaf of C* -invariants. With homogeneous
coordinates jq the C*-invariant sections of H°(U, 0c«+i |c(X)) can be

considered as elements of H°(X, F* <g>c Ox(I))', where V H°(X, Ox(1)). We

get the degree zero part T^xf0) as cokerH°(X, V*&cQx(l)) H°(X,Nx/p«).
We factorise this map corresponding to a splitting of the exact sequence (3.1) :

(3.2) 0 — T°C(X) — ©c»+i |c(x> —» —+ 0,

(3.3) 0 —» G—* Ncm —> — 0.

Denoting by Qx the sheaf of C* invariants associated to G we dbtain

H°(X, V* ®C Ox(l))— H°(X, Çx) —>

On X we have the exact sequence

0 —» Qx —» Ax/p» —> Tx —> 0.

The short exact sequence (3.2) gives

0 — Viffx —> y* Ox(l) ^Gx—^0
with Viffx the sheaf of differential operators on X, which is related to Tx

by the exact sequence

0 Ox —* Viffx —> 0.
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3.9. PROPOSITION. LetX be a d-semistable K3 of type III
The space of infinitesimal locally trivial embedded deformations is H

of dimension k+ 17. It has codimension one in

Proof From the computation of hin3.4 and the exact sequence

for Viffx we conclude that h,0(Viffx)1. As hl(Ox) 0 and

h2(Ox) 1 we get the exact sequence

0 —» H1 ÇDiffx) —» —* —» H2(Viffx) — 0.

The line bundle 0(1) determines a class G H1(Q}/t1), which lifts to a

deformation 0 G Hl(X,T$) if and only if (d,h) 0 with (-, -) the perfect

pairing H\T$) ® H\Q}ft1)->H2(Ox) C. This accounts for the non-

algebraic deformation direction. So dim= 17 and V2(Viffx) 0.

We then obtain

H\x, Viffx) coker {H°(X, V* ®c Ox(l)) —H°(X,

and hl(Qx)0, as hl(X, Ox(1)) 0 for i > 0. Finally we get Hl(Nx/p,.)

Hl(Tx) and the exact sequence

o _» H°(X, Gx)— H°(X,Nx/p.)—» H°(X, Tj?) — 0.

3.10. For 7c(X)(0) we can argue as in the smooth case [S2, (1.25)] to

obtain the exact sequence

o —» T2C(X)(0)—> H\X,Nx/pn)—
with the dj the degrees of the generators of the ideal of C(X) (or of X). In

particular, in our situation T2ax)(0) H\Nx,r») H\Tt).

3.11. THEOREM [F-S, (5.5)]. A d-semistable K3-surface X of type III
in P" is smoothable by embedded deformations. They form a 19 -dimensional

smooth component.

Proof. In the embedded case the base space is also the fibre of a map
between the relevant cotangent modules, and the locally trivial deformations are

unobstructed. The map Ob: H1 ÇDiffx) x H°(Tx) —> Hl(Tx) is the restriction
of the obstruction map in 3.5. We observe that Hl(Viffx) is transversal to

p|kerOb( &), as the class h satisfies h2> 0 and is therefore independent
i

of the classes of the
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3.12. The topology of the special fibre. One can compute the

homology Z) with a Mayer-Vietoris spectral sequence [P, Prop. 2.5.1]
with E1-termE)>

q -Hp(Xlq\Z), where Xm ]J Xm ]j DtJ and X[2]

the set of triple points Xt fi Xj D Xk.

k

3.13. PROPOSITION. X |J Xi be a d-semistable K3 -surface of
i— 1

type III in {—I)-form, with k components. Then

dim H0(X, Z) 1,

dimtf2(X, Z) fc+19,
dimH4(X, Z) k.

Proof The El -term of the spectral sequence looks like :

©W,Z)
0

©tf2(Xf,Z) ©H2(Ay,Z)

0 0

© HoÄ-, Z) © //o(Ay, Z) © #o(7V*, Z)

To prove that the map ©//2(Z)y Z) ©iT2(Xj, Z) is injective we observe

that ©y//2(A/, Z) —>#2(X,Z) is injective unless ^ is a hexagonal component.

We take care of those by arguing as in the proofs of Lemmas 3.3 and

3.6. If the component Xt is obtained by blowing up P2 in öt points, then

Z?2(X) Si + 1 10 — ej with the notation of 3.3, so the cokernel of the

map ©tf2(A/, Z) -4 ©iT2(X/,Z) has dimension 10V — 3E ^ + 18. The

dimension formulas now follow from the spectral sequence.
*

3.14. We describe the non-algebraic homology class in more detail. Each

double curve contains two triple points, which are homologous, so the boundary
of an interval. On a component Xt these intervals make up a closed polygon
(with ei edges), which itself is the boundary of a topological disc. For the case

of P2 blown up in 4 points this is illustrated in Figure 5.1 : after blowing up we
have a pentagon, which is the boundary of the strict transform of the shaded

area. With the given coordinates this strict transform consists of all points on
the Del Pezzo surface with positive coordinates. Finally the discs glue together
to a real polyhedron with the same dual graph as the complex surface X.



SEMISTABLE X3-SURFACES WITH ICOSAHEDRAL SYMMETRY 113

3.15. A nice construction for studying the homology of the general fibre is

given by [A'C]. Let at : Zt -* X be the oriented real blow-up of X{ C X. This

is a manifold with boundary, whose boundary dZ\ — erf1 (A;) is isomorphic

to the boundary of a tubular neighbourhood of Xt in X. The fibred product

a : Z —> X of the crz is a manifold with corners. Its boundary Af := dZ comes

with a map to A. It also fibres over Sl : the composed map Z ^ X ^ S 3 0

j extends to a map from Z to the real oriented blow-up of S in 0 (polar
j coordinates A fibre of Af —> Sl is then a topological model of the general
I fibre.

This model is not sufficient to describe the monodromy. One has first
to replace X by the geometric realisation of the simplicial object A['] : one

replaces each double point by an interval, and each triple point by a 2-simplex.
A final fibred product then gives the new model. For details see [A'C, §2].

4. Hodge algebras

4.1. Stanley-Reisner rings. Let A be a simplicial complex with set

of vertices V {ui,... ,vn}. A monomial on V is an element of Ny. Each
subset of V determines a monomial on V by its characteristic function. The

support of a monomial M: V —> N is the set suppM {v G V | M(v) ^ 0}.
The set ZA of monomials whose support is not a face is an ideal, generated
by the monomials corresponding to minimal non-simplices.

Given a ring R and an injection (f>: V —> R we can associate to each
monomial M on V the element cj)(M) YlveV (ß(v)M(v) G R. We will usually
identify V and and write M G R for (ß(M). This applies in particular
to the polynomial ring K[V\ over a field K. The ideal ZA gives rise to the
Stanley-Reisner ideal /A C K[V]. The Stanley-Reisner ring is Aa K[V]/IA.

Deformations of Stanley-Reisner rings are studied in [A-C].

4.2. Example. Let A be an octahedron. We map the set of vertices to
C[xu...,x6] such that opposite vertices correspond to variables with index
sum 7.

The Stanley-Reisner ring is minimally generated by the three monomials
x/x7_/. The spaces smoothes to a A3-surface, the complete intersection of
three general quadrics. A general 1-parameter deformation is not semi-stable,
because the total space has singularities at the six quadruple points of the
special fibre.
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