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To reformulate, let x be a Cartesian coordinate along the diameter, and

let O be the equator {x 0}. Each p e S lies on a unique circle Op

perpendicular to the diameter; let 2irr be the oriented area bounded by
O and Op. Theorem 1.1 asserts that the extrinsic position x and the intrinsic
coordinate r are the same orbit parameter.

Of course, distance along the axis of rotation does not correspond so

nicely with zonal area on a general surface of revolution, but in some ways
area is a "better" parameter: with a judicious choice of profile function,
the Gaussian curvature becomes extremely simple. The resulting description
makes it easy to study and classify surfaces of revolution that have specified
Gaussian curvature. The motivation for this description comes from symplectic
and Kähler geometry, but the idea and methods are elementary.

2. Abstract surfaces of revolution

Identify the circle Sl with the multiplicative group of complex numbers

of norm 1, and let P1 CU {oo} be the Riemann sphere, equipped with the
Sl -action induced by multiplication on C. In this note, an abstract surface of
revolution is a pair Z » (D, g) consisting of a connected, Sl -invariant domain

DcP1 and an Sl -invariant metric g, possibly with conical singularities at

the fixed points.

General metrics in coordinates

There are two "natural" coordinate systems on an abstract surface of
revolution: isothermal parameters adapted to the circle action, and action-

angle coordinates. While each highlights aspects of the metric geometry, their

interplay is synergistic, and naturally suggests the "correct" choice of profile.

Isothermal parameters. A coordinate system (x,y) is said to be

isothermal for the metric g if there exists a (locally defined) function
i/j — ip(x, y) such that

g e^(dx2 + dy2).

On a surface of revolution, existence of isothermal parameters is elementary.
To wit, choose local coordinates (r, 6) in which ^ generates the S1 action.

Because the metric is invariant under the circle action, the components of g
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do not depend on 8. Fix a point wq G D and consider the curve through wq

that is everywhere g-orthogonal to the Sl orbits. Let s be a real coordinate

along this curve, and use the circle action to extend s to all of D ; in (s, 8),

the metric has the form

g e^(s) ds2 + e^{s) dO2

Now solve the differential equation e^x^s'(t)2 for s as a function

of t, and set if) ip2 ° s. In (f, 6), the metric has the form

(2.1) gae+Vfâ+dO2).

The area form and action-angle coordinates. By (2.1), the area

element of g is the 2-form

dA em dt A dO.

Writing dr for the exact 1-form e^ dt, the area form is

(2.2) dA — drAdO.

The function r, unique up to an additive constant, is a function of t alone,

i.e., is constant on the orbits of the Sl action.

A zone of £ is a connected region bounded by two orbits. Equation (2.2)

immediately implies that the zone {to < r < r\} has area 27t(ti — to) for all

to < t\ In symplectic geometry, an Sl -invariant function with this property
is called a moment map of the circle action, and (t, 0) are called action-

angle variables. Archimedes' theorem asserts that for the unit sphere in R3,

projection to a diameter is a moment map for the circle action that revolves
the sphere about that diameter.

Introducing the function p(r) e^, the metric g is given by

(2.3) <p(t) (dt2 + dO2) -J- dr2 + <p(T)dd2.
<P(

The thesis of this note is that ip, henceforth called the momentum profile
of the metric, is the correct choice of profile for investigations concerning
Gaussian curvature.

Equation (2.3) implies that the length element along an orbit is \fp{r) dO,

so the length of an orbit is 2tSimilarly, the arc length element along
a generator of the surface is

(2.4) ds AZA)dt
VViT)
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The geometry (in almost the literal sense of "earth measurement") of
the metric is depicted in Figure 2.1. Fix an orbit O and define a function

r: D -A R by letting 2itt(p) be the oriented area of the zone bounded by
O and the orbit through p. Let I C R be the image of r, and define the

non-negative function p: I -> R so that 2iTyjp{r) is the length of the orbit
through p.

Figure 2.1

A metric in terms of zonal area

Constructing the metric

Figure 2.1 expresses the moment map r and the momentum profile

ip in terms of the metric geometry. In order to work analytically
with surfaces of revolution, it is desirable to reverse this development.

Clearly, g can be recovered from r and ip ; remarkably, ip alone is

enough.

In P1, the points 0 and oo, which are fixed by the S1 -action, are

exceptional. If D contains fixed points of the circle action, then geometric

properties of the metric, such as completeness or smooth extendibility, must
be studied separately there. Until further notice, it is assumed that fixed points
in D (if any) have been removed. The domain D on which the metric lives

is therefore a subset of the punctured complex line Cx. The isothermal

coordinates (t, 6) are hereafter identified with the global complex coordinate

w exp(£ + id).
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To avoid fixed points, consider an open interval I (a, ß). A momentum

profile is a positive function cp: I -A R, of class C2 on a neighborhood of

the closure. Given a momentum profile p, the aim is to construct a surface

of revolution X (D.g^) and a function r: D -A I such that

(i) Each level set of r is an orbit of the circle action.

(ii) The area of the zone {to < r < t\} is 2tt(ti — to) for all to < n ml.
(iii) The length of the orbit {t to} is 2tvVOo) for a < To < ß.

Begin by fixing to G / arbitrarily and setting

dx
7

fß dxr — [; L VV) ' !" JTo(2.5) -. •

lro Vi*) J to </>(*)

Because l/<p > 0 on (a,/3), the equation

r(0
(2.6) t= —Jro <?(*)

defines an increasing, differentiable function t: (a, b) -a (u, ß). The metric
and area form, which a priori depend on to, are defined by

^C7") (dt2 + ^2) 5
dA p(r) dt A dO

on the annulus D {et+l9 GCX \ a < t < b}.
Differentiating (2.6) with respect to t, r' — p(r), so dA dr A dO.

Properties (i)-(iii) follow immediately. The function s: (a,b) -A R defined

by

r(t) dx
(2.7) s(t) / -=J To VVW

gives the geodesic distance along a generator of X by (2.4).
To see analytically that the isometry class of g^ does not depend on to,

introduce the function

rT^ xdx

/TO <?(*)

Because r' — p(r), successive differentiation gives

(2.8) u(t) fJ TO

u' —t u"(t)— ip(r),

or «"(f) e'l'(" in the notation of (2.1). Varying to changes u by an additive
constant, which has no effect on e'w,j u"(t). As a function of r is the
inverse of a definite integral ; changing the lower limit of integration in (2.5)
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causes the interval (<a, b) to be translated, which does not alter the conformai

type of the annulus D. Geometrically, a choice of to fixes the orbit O in
Figure 2.1.

Similar considerations show that the metric associated to the "translated"

profile r i-> cp(r — To) is isometric to for every To G R, as is the metric
associated to the "reflected" profile t p(—r). Specifically, a translational
change of variable in (2.8) changes u by an added affine function of t, while
reflecting reverses the orientation of the t axis. Neither affects the isometry
class of the resulting metric. It is therefore harmless to assume, as convenient,
that 0 G I (a, ß) or (if I ^ R) that a 0.

The Gaussian curvature

In isothermal coordinates (v, y), the Gaussian curvature of g e^(dx2jrdy2)
is given by the well-known formula

K=-\e-H^XX+^yy).
On a surface of revolution, the conformai factor is independent of 6, so

the Gaussian curvature simplifies to

(2.9) K=
To compute K in terms of t first note that the equation dr p(r) dt implies

e~^§i anc* §i ~ Jv as vector fields on D. Since ip(t) log<p(r),
substituting in (2.9) gives

(2.10) K=~J& G^dogV)) " U"<r).

This striking formula is perhaps the greatest advantage of "momentum"
coordinates over more familiar coordinates used in elementary differential

geometry.

Remark 2.1. It is a pleasant, instructive exercise to write out the Laplace-
Beltrami operator of g^ in terms of (p. The resulting formula facilitates the

explicit study of spectral geometry, see for example [3] and [7].

Completeness and extendibility

Let (p: (a:ß) —>• R be a momentum profile, and assume g^ is defined

on a dense subset of a smooth, complete surface of revolution. Each end of
the momentum interval corresponds to a topological end of Z. The "virtual"
level set {t ß} corresponds to the orbit {t b} in P1. If ß is finite and
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(p(ß) > 0, then the metric extends to a metric with a larger open momentum

interval, so if ß < oo then piß) 0. Geometrically this means the orbits

must "close up" at an end of finite area, though the virtual orbit may be at

finite or infinite distance. If the orbit {r ß} is at finite distance, it must be

a fixed point (not a circle), so b — oo. Similar remarks hold for the virtual

level set {r a}.
If ß oo, then the metric is complete at the corresponding end if and

only if
r°° dx

Jt0 vVW
diverges. For a rational profile p, the integral diverges if and only if <p

grows no faster than quadratically as r —> oo. Analogous observations hold

if a —oo.

Suppose ß is finite, and that piß) 0 but p'iß) / 0. Equation (2.6)

implies that t is unbounded near {r ß}, which means the end contains

a fixed point of the circle action1). Assume without loss of generality that

ß — 0, and consider the zone {—e < r < 0} C D, whose boundary has

length 27xßpi—e). Let s be the geodesic distance from the fixed point to the

boundary. The cone angle ß at the fixed point is defined to be

271y</?(-£)
cfb — lim

£—^o+ s

and the metric extends smoothly if and only if ß 2tt L'Hopital's rule gives

(2.11) ß -(p'(ß)ir,

so the metric is smooth if and only if p'(ß) — 2. By symmetry, if —oo < a
and the end {r a] is at finite distance, then the metric extends smoothly
to the fixed point if and only if <p'(a) 2.

In the remaining case, (p and p' both vanish at ß. By assumption, the

profile has a C2 extension to a neighborhood of ß, so Taylor's theorem implies

v(r) -^\t- ßj2 + o(t - ß)2

near ß. This in turn implies that the arc length integral diverges near ß, so
the end is complete.

The respective possibilities, with ß oo or 1, are depicted in Figure 2.2.

1

Alternatively, (2.7) implies the distance to the end is finite, so the end is a puncture as
noted previously.



164 A; D. HWANG

Figure 2.2

Momentum profiles inducing smooth, complete metrics

Conical singularities and the Gauss-Bonnet theorem. At a smooth

point of X, the curvature form is KdA, the Gaussian curvature times the

area form. If v is an isolated conical singularity, the angular defect at v
is 27r — 0 and the curvature form at v is defined to be the angular defect
times the ö-function supported at v. Equation (2.11) yields the following
observation.

PROPOSITION 2.2. If p — 0 and p' 7^ 0 at a finite endpoint of the

momentum interval, then the angular defect at the corresponding fixed point
of X is (2 — \p'\)ir.

In action-angle coordinates, the Gauss-Bonnet theorem for compact surfaces

of revolution is the fundamental theorem of calculus. After scaling and

translating we may assume the momentum interval is [—/?,/?]. By (2.10)
and Proposition 2.2, the total curvature of X is

f KdA (2 4- (p\ß))7T + (2 - (p'{—ß))n + 2tt / -\p" — \tx
Je J-ß

The Kazdan-Warner integrability condition [5] has a similar interpretation:
The Gaussian curvature K k(t) is the second derivative of a function that

vanishes at r ±ß.
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Classical surfaces of revolution

Not every abstract surface of revolution embeds in R3, even if the image is

not assumed to be rotationally symmetric : A famous theorem of Hilbert asserts

that the hyperbolic plane cannot even be immersed isometrically in R3. There

is, however, an elementary criterion for embedability, assuming the image is

a classical surface of revolution:

Proposition 2.3. Let X be the abstract surface of revolution associated

to a momentum profile p. A portion of X embeds in R3 as a surface of
revolution if and only if \p'\ <2 on the corresponding part of the momentum
interval.

Proof Let £ be a positive function, and let X be the abstract surface
obtained by revolving the graph of £ about the x-axis in R3. The profile
gives the length squared of namely p{r) £(x)2. Differentiating with
respect to i,

p'fir) • r'(x) 2£(x) • £'(x).

Equating the area elements in the classical and momentum descriptions,

dr £(x)\/1 + £'(x)2 dx.

Combining these observations,

u \ 2£'(x) p'(r)
p (r) or £ (x)

a/1 + £;(x)2 \/4 - p'fir)2

This implies \p'{r)\ <2, with equality if and only if |£;(x)[ oo.

Several examples are depicted in Section 3.

Summary

For the reader's convenience, here is a concise account of the momentum
construction for surfaces of revolution.

Definition 2.4. Let I c R be an interval, possibly unbounded. A
momentum profile is a function of class C2 on a neighborhood of the closure
of I that is positive on the interior of I.
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THEOREM 2.5. Let <p: I R be a momentum profile. There exists an
abstract surface of revolution (D^g^), unique up to isometry, such that

• The image of the moment map r: D -y R is I.
• The orbit {r to} has length 27TvV(to) for att ro /.

Gaussian curvature of g^ is K —^ip"(r) wherever the metric is smooth,
and the angular defect at a fixed point is (2— \p'\)ti. The metric is complete
at an end {r ß} if and only if one of the following holds :

fß fa
(Infinite-area end) \ß\ oo and / diverges.

JTo WW
(Smooth EXTENSION) ß is finite, p(ß) 0, and \ip'(ß)\ 2>

(Finite-area end) ß is finite, p(ß) 0, and cpfß) 0.

3. Metrics of specified curvature

In momentum coordinates, specifying the Gaussian curvature of a metric
in terms of zonal area is a matter of integrating twice. The construction is

therefore well-adapted to exhibiting a variety of interesting metrics.

Constant curvature

Theorem 2.5 and Proposition 2.3 give a simple classification of surfaces

of revolution that have constant Gaussian curvature, together with an easy
characterization of when the abstract surface embeds in R3 as a surface

of revolution. Many surfaces of constant negative curvature (such as the

pseudosphere) are seen to be portions of complete abstract surfaces of
revolution.

Smooth, complete metrics. A metric of constant Gaussian curvature

corresponds to a quadratic profile <p, and the metric is smooth and complete

if and only if
• p > 0 on R, or

• \<p'(ß)\ 2 at some (hence each) root of cp.

Table 3.1 lists smooth, complete surfaces of revolution that have constant
Gaussian curvature. Most of these metrics embed only partially in R3 as

surfaces of revolution, and no zone of the Poincaré metric (on the disk A)
embeds as a surface of revolution. The pseudosphere is the zone in the
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