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Hence |/c|j(/) > xn-x-n\^D\f(i)' so ^at l^cW) -
Now lim„_,.+0o TTxk)1, SO that for some nt > I, for any

n > «*, iq^) > Since the horizontal length of any interval 4 in 7C

is at most C^ iiJ, J'),and the telescopic length of the associated Pk C p is at

least to. we obtain

H*,«) - 2C6.2(J,7')'7'/(/) '

On the other hand, < 2Jnto + \~nJ\I\^ + /' for any n > n*. The last

two inequalities give, for n > n*, 2/wft + ^ - 2C6 2U/0 s

equivalently 2Jnto + / > (^qaTT7) — ^~n^)l^l/(/) • We c^oose > ft* such

that " A_no/ > °- get

2Jn0to J1
1 1

Thus, for |/Ln > —2Jnof0+/— ^ not dqated in the future after ft. If
1 UK1) y

7 \~n°J
2C6.2(J,J')

111/(/) > then I h |y^) > M. Therefore h is dilated in the past after ft. We

choose N such that A^AT"0 > A. Thus, if \I\f(n > max(A"°M, —^"°'°+/„
2c6.2(y,70

A 07

then I is dilated in the past after (ftoC6.2(L, J') + N)to. The arguments and

computations in the case where maxxepf(x) < f(I) are the same.

7. Substitution of quasi geodesics

LEMMA 7.1. Let p be a (J, /) -quasi geodesic. Let q be obtained from
p by replacing subpaths pi C p by (L,Lf)-quasi geodesics qt satisfying the

following properties :

• qi has the same endpoints as pi,

• qt is L-close to pi,

\CJ'\(X,U) - L\Pi\(x^<uy

There exists a constant Cq.\(L,L',J'), which increases in each variable,
such that q is a (C7.i(L, Z/, 7, /), C7.i(L, L' J'))-quasi geodesic which is
L-close to p.

Proof Since each qt is L-close to a pi9 and with the same endpoints,
q is L-close to p. Let us consider any two points x, y in q and let q^ c q
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be the subpath of q between x and y. If both x and y lie in a qi, or
in a same subpath in the closed complement of the union of the qfs, then

\qxy\(x,7i) - + maxCL7,/). Otherwise qxy wiw2w3, j

where w\, w3 are contained either in some qt or in p, and w2 begins and ends j

with the initial or terminal point of some qt. The third property concerning the

qCs leads to < L\Pi\(xn)' w^ere P2 C p is the subpath of p with the

same endpoints as w2. Thus \Çxy\^xn) < LJd~U)(x,y) + 2mdiX(L!,LJ'). |

LEMMA 7.2. Let p be a straight (J, J')-quasi geodesic --hole such that

maxxç.pf(I)—f(x) < L, where I is the horizontal geodesic joining the endpoints \

of p. Then there exists a constant C2 2(L,J,Jf) > M, which increases in each

variable, such that

1) |/|/(/) < C7.2(L,J,f)\p\~ny ;

2) I is a straight (C7.2(L,J,Jf),C2.2{L,J^ J'))-quasi geodesic which is \

C2.2(L, J ,J')-close to p.

Proof A horizontal geodesic is always straight. The horizontal geodesic

I is the pulled-tight projection of p. Thus, by the bounded-dilatation property,

\I\/(i) < ^+\p\(xu)' Lemma 5.6, I is Cs.öOQ-close to p. Consider any

subpath I' of / ; it is the pulled-tight projection of some subpath pi of p. By j

the bounded-dilatation property, \T\^ < \\\p'\^ny Since p is a (/,/)-quasi |

geodesic, |I'\f^ < Since I' is C5^(L)-close to p', j

\I' \m < A\Jd~U){i{I'f t(If)) + AzjL(2/C5.6(T) + /). j

LEMMA 7.3. Let p be a straight (J^f)-quasi geodesic —-hole such that j

the horizontal length of the horizontal geodesic I between its endpoints is less j

than or equal to L. Then there exists a constant C2 3(L,J,J/) > M, which j

increases in each variable, such that i

j

1) |/|/(/)<C7.30M,/)IpI(?iW. I

2) I is a straight (Cj^iL, Cj.3(L,J, Jf))-quasi geodesic which is

C7.3(L,/,/)-close to p. j

J

Proof Since p is a (/,/ )-quasi geodesic, |

max|/(x)—/(/)| <J\I\m + Jf.
x£p 'v J I

Lemma 7.3 now follows from Lemma 7.2. I
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Lemma 7.4. Let p be a straight (J, J')-quasi geodesic stair For any

L > 0, there exists a constant C7a(L,J,70, which increases in each variable,

such that if q is a straight stair whose points are at horizontal distance at

most L from p, and with the same endpoints as p, then

1) q is a straight (C7.4(L, J, /')> C7.4(L, J, J')) -quasi geodesic stair which

is L-close to p.
2) kl(x,w) - C7A(L,J,J')\p\ ~n).

Proof Consider a stair S, in the disc bounded by pUq, whose endpoints

are those of p and q, and whose vertical geodesies end at q, all the stairs

being oriented so that / is increasing along them. Consider a subpath S of
S which is the concatenation of a vertical segment followed by a horizontal

one. By assumption, the horizontal length X of S' is bounded above by L.
Let t be its vertical length. The bounded-dilatation property implies that the

quotient of by the telescopic length of the subpath of p between

the endpoints of S' is bounded above by Q Since X < L, Q
t-\-A_|_ X

tends to 1 as t -A +00. One thus obtains a constant T such that for
t > T, Q is bounded above by some constant, depending on L. When
both t and X are close to 0 then Q is close to 1. Hence, since Q is

continuous, Q admits an upper bound, denoted by A(L), for all the t and

X considered. This upper bound will be the same for all the subpaths S as

above.

The stair S is a concatenation of such subpaths S', possibly with one or
two subpaths of p at the extremities. Thus the additivity of the telescopic
length gives < A(L)\p\~n Let S" be a subpath of S which is
the concatenation of a horizontal subpath followed by a vertical one. The

path S is the concatenation of such subpaths Sf/ with possibly one or two
subpaths of q at the extremities. Exactly the same arguments as above give
141

(X,H) - A(L^S\(XWWethus get \q\(x,u) (x,HV
11 only remains

to prove that q is a quasi geodesic with constants of quasi geodesicity
depending only on L,/,/. Let x, y be any two points in q. As usual

qxy is the subpath of q between x and y and we denote by px/y the
subpath of p between the two points x!, / in p which are at horizontal
distance at most L from x and y. We consider a stair S between qxy
and px'y>, with the same endpoints as qxy. The same arguments as above
apply and give \qxy\{~H)<A(L)2\pxy\{~ny Since p is a (7,/)-quasi
geodesic, we conclude that -Since

d(x,-H)V-Y) < d(x,utx'y)+ 2L>theProof °f Lemma 7.4 is complete.
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