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EXAMPLE 1.2. The group W = Z/2 acts on h = C by s(v) = —v. In
this case m is a non negative integer and X = {s}. So this definition says
that ¢ is in O, iff g(x)—q(—x) is divisible by x*"'. It is very easy to write
a basis of 0,,. It is given by the polynomials {x* | i > 0} U {x**' | i > m}.

1.2 ELEMENTARY PROPERTIES OF Q,,

Some elementary properties of O, are collected in the following propo-
sition.

PROPOSITION 1.3 (see [FV] and references therein).

1) CHIY € Qn C Clhl, Qo = CIHl, QOnw C Qw if m =z m,
ﬂm Qm — C[h]W .

2) O, is a graded subalgebra of Clh].

3) The fraction field of Q,, is equal to C(h).

4 Q,, is a finite C[h]" -module and a finitely generated algebra. C[h] is a
finite Q,,-module.

Proof. 1) is immediate and has already been mentioned in 1.1.
2) Clearly Q,, is closed under addition. Let p,q € O,,. Let s € X. Then

p(0)q(x) — p(sx)q(sx) = (p(x) — p(sx))q(x) + p(sx)(g(x) — g(sx)) .
Since both p(x) — p(sx) and g(x) — g(sx) are divisible by a?™*!, we deduce

s

that p(x)g(x) — p(sx)q(sx) is also divisible by o™+, proving the claim.
3) Consider the polynomial

Samr1(®) = | T s+
SEX
This polynomial is uniquely defined up to scaling. One has dyy,+1(sx) =
—my1(x) for each s € X, hence dyut1 € O Take f(x) € C[h]. We claim
that f(x)dpms1(x) € Q.. As a matter of fact,

F)02my1(x) — f(sX)02mp-1(5%) = (f(x) + f(5x))02m41(x),

and by its definition 8, 1(x) is divisible by oy (x)*™T! for all s € X. This
implies 3).

4) By Hilbert’s theorem on the finiteness of invariants, we get that C[H]"V
is a finitely generated algebra over C and C[h] is a finite C[h]" -module and
hence a finite Q,,-module, proving the second part of 4).

Now Q,, C C[h] is a submodule of the finite module C[h] over the

Noetherian ring C[h]". Hence it is finite. This immediately implies that Q,,
is a finitely generated algebra over C. [
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REMARK. In fact, since W is a finite Coxeter group, a celebrated result
of Chevalley says that the algebra C[h]" is not only a finitely generated
C-algebra but actually a free (=polynomial) algebra. Namely, it is of the
form Clqy,...,q,], where the g; are homogeneous polynomials of some
degrees d;. Furthermore, if we denote by H the subspace of C[h] of harmonic
polynomials, i.e. of polynomials killed by W -invariant differential operators
with constant coefficients without constant term, then the multiplication
map

Ch1" ® H — C[h]

is an isomorphism of C[h]" - and of W-modules. In particular, C[h] is a free
C[5]"-module of rank |W]|.

1.3 THE VARIETY X,, AND ITS BUECTIVE NORMALIZATION

Using Proposition 1.3, we can define the irreducible affine variety
Xn = Spec(Qy,). The inclusion Q,, C C[h] induces a morphism

m:bh— X,

which again by Proposition 1.3 is birational and surjective. (Notice that in
particular this implies that X,, is singular for all m # 0.)
In fact, not only is 7 birational, but a stronger result 1s true.

PROPOSITION 1.4 (Berest, see [BEG]). 7 is a bijection.

Proof. By the above remarks, we only have to show that 7 is injective.
In order to achieve this, we need to prove that quasi-invariants separate points
of b, i.e. that if z,y € h and z # y, then there exists p € @, such that
p(z) # p(y). This is obtained in the following way. Let W, C W be the
stabilizer of z and choose f € C[h] such that f(z) # 0, f(y) = 0. Set

pwy= [] et ][ faw.
SEZX ,57F7 weW,

We claim that p(x) € Q,,. Indeed, let s € ¥ and assume that s(z) # z.
We have by definition p(x) = a,(x)*™"1p(x), with p(x) a polynomial. So

p(x) — p(sx) = a;(0)*™ M p(x) — a(s2)™™ T p(sx) = ()™ T (Bx) + plsx)) -

If on the other hand, sz = z, i.e. s € W,, then s preserves the set
W\ W,, and hence preserves HséZﬂ(W\Wz) a,(x)?™t1 (as it acts by —1 on the

products [T oy os(0)*™+! and [[icpqw, as@)?™*). Since [,y fwx) is
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