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ON SINGULARITIES, "PERESTROIKAS"

AND DIFFERENTIAL GEOMETRY OF SPACE CURVES

by Ricardo Uribe-VARGAS

Abstract. We study the geometry of smooth curves in Euclidean 3-space in

a neighbourhood of flattenings (points at which the osculating plane is stationary)
and of Darboux vertices (points at which the instantaneous axis of rotation of the

Frenet trihedral is stationary). Concerning these special points, we present local and

global theorems and describe all bifurcations which may occur in generic 1 -parameter
families of smooth curves. The definition of a flattening directly generalises to curves
in higher-dimensional Euclidean spaces while the definition of a Darboux vertex has

two possible generalisations, called a Darboux vertex and a twisting. We present new
results on flattenings, Darboux vertices and twistings for curves in Euclidean spaces

of arbitrary dimension.

0. Introduction

We present new theorems on local and global differential geometry of

curves in Euclidean spaces. We follow the kinematic interpretation of the

Frenet trihedral, initiated by Darboux [8] and described in [10]. When a point

moves along a curve in Euclidean space R3, its Frenet trihedral (t, n,b),
parallely translated to the origin, defines a rigid motion around the origin
called Frenet motion. The instantaneous axis of rotation of Frenet motion —

which we call the Darboux axis — is determined by the Darboux vector :

d rt + nb, where k and r are the curvature and the torsion of the curve,

respectively.
The endpoints of the translated vectors of the Frenet trihedral t, n, b and

of the normalised Darboux vector d f\/\/n2 + t2 describe four curves T,
N, B, D, on the unit sphere S2 C R3, called the tangent, normal, binormal
and Darboux indicatrices of that curve, respectively.

A flattening (Darboux vertex) of a smooth curve 7 : R -A R3 is a point at

which the osculating plane (respectively the Darboux axis) is stationary.
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For both Darboux vertices and flattenings the radius of the osculating
circle of the tangent indicatrix T is critical (at flattenings it has the maximal
value : 1

Let 7: S1 —» R3 be a smoothly immersed curve. A Darboux vertex of
7 for which the radius of the osculating circle of the tangent indicatrix
has a local maximum (minimum) will be called an M-D-vertex (m-D-vertex,
respectively). Write M(7), m(7) and F(y) for the number of its M-D-vertices,
ra-D-vertices and flattenings, respectively. We have discovered and proved (see
Theorem 3) a universal relation between the number of points at which the
Darboux axis is stationary (M-D-vertices and m-D-vertices) and the number
of points at which the osculating plane is stationary (flattenings) :

Any generic closed curve 7: S1 -> R3 satisfies m(y) - M(7) - ^(7) 0.

A generic curve in Euclidean 3-space has no inflection (point where the
curvature vanishes). However, a generic 1-parameter family of curves can
have, at isolated parameter values, a curve having one isolated inflection. The
smooth curves having an inflection form a discriminant hypersurface in the

space of smooth curves. We study the local bifurcations of the curve when a

generic 1-parameter family traverses this discriminant hypersurface. Given a

curve, put the following labels to its special points: m to the ra-D-vertices,
$ to the flattenings and 3 to the inflections. Below, the symbol means
the curve has exactly 5 special points arranged in that order — in a very
small interval. For the bifurcations, the symbol ^represents the transition
between two 'local situations' of the curve. Given a generic 1-parameter
family of curves yt, suppose that for the parameter value of the family t — 0

the corresponding curve 70 has an inflection point (Theorem 1):

During an "inflection" perestroika, the curve experiences the following
transition in a neighbourhood of the inflection point (see Figure 1):

m <—» 3 <—»

t<0 t 0 t> 0

This theorem shows that there is a very rich geometry associated with
inflections. Part of such a geometry appears in the transitions experienced by
the tangent, normal, binormal and Darboux indicatrices, during an inflection
perestroika. See Figures 4, 2, 5 and 3.
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m m

Figure 1

Schematic representation of the local transitions of a curve during an inflection Perestroika

Besides the inflection perestroika, there is only one other perestroika in

generic 1 -parameter families, the biflattening perestroika, for which the number

of flattenings changes (Theorem 2). In both, Darboux vertices play an essential

role: 2 flattenings can appear or disappear only at the Darboux vertices of

the curve. So Darboux vertices are necessary to have such perestroikas. It is

surprising that Darboux vertices had not been deeply studied before.

We can consider the tangent and binormal indicatrices as wave fronts

on the unit sphere, while the Darboux indicatrix may be considered as a

caustic. The flattenings and Darboux vertices of a curve in Euclidean 3-space

correspond to semi-cubic cusps of these wave fronts and caustics, respectively.

Such considerations were the starting point for the discovery and for the initial

proofs of the results presented here for curves in R3. These results belong

thus to the theory of singularities in symplectic and contact geometry (see [5],

[3] and [16]). However, the perestroikas of wave fronts and caustics occurring

during the inflection perestroika are not in the list of standard perestroikas

(see 11] or [3]) of one-dimensional fronts and caustics

When the Frenet frame of a curve in Euclidean space is translated to

the origin, it determines a rigid motion which has an instantaneous axis of

rotation (called Darboux axis) only if the space is of odd dimension. A point

for which the Darboux axis is stationary is called a Darboux vertex of that

curve (see Theorem 7) :

Let 7 be a smoothly immersed curve in R2^+1, k> 1. Write k\ «2, • • •, ^2k

for its curvatures. The curve 7 has a Darboux vertex at s — so if and only

if (k2/^1/= 0, — 0,..., {nik/= 0 at s — sq.

Acknowledgements. The author is grateful to V.l. Arnold for useful
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for helpful discussions, useful remarks and questions, and to F. Aicardi for
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1. Preparatory definitions

Definition. Let M be a d-dimensional submanifold of R", considered
as a complete intersection: M {x G Rw : gx(x) • • • gn-d(x) 0}. We
say that k is the order of contact of a curve 7 : t \-> 7(t) e R" with the
submanifold M, or that 7 and M have k-point contact, at a point 7(/b), if
at t to each function o 7.....gn_d 07 has a zero of multiplicity at least
k and at least one of them has a zero of multiplicity k.

Remark. To make this definition more invariant, one could denote the
image of 7 by T and then write that the order of contact at a point is
the minimum of the multiplicities of zero among the functions of the form
9|r- r —> R, at that point, where g: R" -a R belongs to the generating ideal
of M and we assume that 0 is a regular value of g.

Example. A smooth curve in R" has 2-point contact with its tangent
line (at the point of tangency) for the generic points of the curve. The curve
y v3 has 3-point contact with the line y 0, at the origin: the equation
x3 0 has a root of multiplicity 3.

DEFINITION. An osculating hyperplane at a point of a curve in Euclidean
(or affine or projective) n-space is a hyperplane having at least n -point contact
with the curve at that point.
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Remark. At any point of a generic curve the osculating hyperplane is

unique and it is spanned by the first n - 1 derivatives of the curve at that

point, which are linearly independent.

Definition. A flattening of a smoothly immersed curve in W is a point at

which the curve has at least 0+1) -point contact with its osculating hyperplane.

Equivalently, a flattening is a point at which the osculating hyperplane is

stationary. Or equivalently, a flattening is a point for which the n-th derivative

of the curve lies on the osculating hyperplane.

Example. The flattenings of a curve in R3 with non-zero curvature are

the points at which the torsion vanishes.

PART I. CURVES IN EUCLIDEAN 3-SPACE

2. Preliminary results for curves in R3

2.1 The "ambiguity" of the Frenet trihedral
We have introduced the notion of Darboux indicatrix and Darboux vector of

a curve 7: R —» R3 using the kinematic interpretation of the Frenet trihedral.

However we must pay attention to the following

Main Remark. The Frenet trihedral is well defined for curves with positive

curvature everywhere (a generic curve has positive curvature everywhere).

However, a difficulty occurs when the curvature is vanishing somewhere (that

is, at the inflections); in this case there is some ambiguity in the definitions

of Frenet trihedral and of curvature. One needs to make some choices. The

usual conventions are :

(a) one supposes that n > 0 and takes the normal n accordingly;

(b) one supposes that k(s) and n(.v) are smooth functions of s (Fenchel, [10]).

None of these choices takes into account that at an inflection all planes

containing the tangent line to the curve are osculating. Moreover, when one

considers not a fixed curve but a family of curves, none of these choices is

consistent. Our choice takes these facts into account:

(c) We suppose that k > 0. For k > 0 we take the direction of the normal n

accordingly; but we suppose that at the inflections the Frenet trihedral is not
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unique : the vector t together with each unit vector v normal to 7 define a
Frenet trihedral: t, n v, b t x v.

In Figures 5 and 3, to the inflection of a space curve there corresponds a
whole great circle in its normal and in its binormal indicatrices, respectively.

Remark. When the curve has an inflection the trihedral's Frenet motion
is not continuous.

2.2 Fenchel's statements

Let 7 be an immersed curve in R3 and let T, N, B and D its tangent,
normal, binormal and Darboux indicatrices, respectively The following facts
are well known ([10]):

(1) The indicatrices D and —D form the spherical caustic of T (and of
B that is, D and — D form the envelope of the family of great circles of S2

orthogonal to T (they are also orthogonal to B).
(2) To a spherical inflection of T there corresponds a cusp of B and vice

versa.

(3) An inflection of 7 corresponds to a cusp of T and to a spherical
inflection of B.

(4) The inflections of N and the cusps of D correspond to the points at
which t/k is stationary.

Remark. The 'vice versa' of item (2) and the statement about B of
item (3) hold for a fixed curve and only under Fenchel's convention (b) of the
Main Remark above. The author discovered all these facts by applying the theory

of wave fronts on the sphere S2, developed by Arnold [5], to the curve T.

2.3 Main lemmas on Darboux vertices and flattenings
Consider the parameter d of a smoothly immersed curve 7 : d ha y(d) G R3

to be the time.

Lemma 2.1. The Darboux axis at time d is determined by the kernel of
the Frenet matrix (given with respect to the basis t, n,b):

/ 0 k 0\
M(d) -n 0 t

V 0 -T 0/
where n is the curvature and r the torsion of 7 at time d.
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Proof. This is a direct consequence of the Frenet equations.

Remark. Evidently, the Darboux vector d -h rt lies in the kernel

of M. We assume that n and r never vanish at the same point.

Remark. The point 7(1?) is a flattening of 7 if and only if the Darboux

vector of 7 at $ is proportional to the binormal vector of 7 at 1?.

The following proposition was proved in [9] by means of geometric

considerations.

LEMMA 2.2. The geodesic curvature of the tangent indicatrix T C S2

of a curve 7 with curvature « / 0 and torsion r is equal to the

function t/k.

Proof Let s and r be the arc length parameters of 7 and of its

tangent indicatrix, respectively. So dT/dr n and ds/dr \/k. The

geodesic curvature of T is given by the orthogonal projection of dn/dr
to the plane orthogonal to t. We have that dn/dr (dn/ds) (ds/dr)
(—Kt + rb)(l /k).

Remark. At a Darboux vertex of a curve in R3 the first derivative of
the Darboux indicatrix vanishes (i.e. it is a semi-cubic cusp of the Darboux

indicatrix if the point is a generic Darboux vertex).

LEMMA 2.3. The Darboux vertices of a curve 7 are the critical points

of the geodesic curvature (t/k) of its tangent indicatrix k 0).

Proof We write uo (k2 + r2)1/2. So D (k/uj)b + (r/uS)t and the

derivative of D with respect to the arc length of 7 is D7 (KT \kî — rb).
So D7 — 0 if and only if (t/k)' 0.

Lemma 2.4. The flattenings ofa curve 7 in R3 correspond to the spherical

inflections of its tangent indicatrix T.

Proof At a spherical inflection of T the second derivative of T belongs

to the plane generated by T and dT/ds. So the first three derivatives of 7
are linearly dependent. Thus this corresponds to a flattening of 7.



76 R. URIBE-VARGAS

3. PERESTROIKAS OF CURVES IN R3

We describe how Darboux vertices behave during the perestroikas in generic one-
parameter families of curves. We describe the corresponding perestroikas of the Darboux
indicatrix, of the tangent indicatrix and of the bitangent indicatrix.

Definition. A point p of a curve in Rn (in RF1) is of type (a\,...,, an)
if, in suitable affine coordinates centered at p, the curve is the image of the
smooth mapping xx ta1 + o(ta!), •. ,xn ta»+o{ta*}, where a{ < < an
are the smallest possible natural numbers for the representation.

EXAMPLE [14]. An ordinary point of a curve in R3 (in RP3) is a point
of type (1,2,3), the simplest flattening is of type (1,2,4), the biflattening is
of type (1,2,5) and the simplest inflection is of type (1,3,4).

REMARK [14]. Besides the ordinary points, a generic curve in R3 (in
RP3 can only have isolated flattenings. Besides the generic curves, a generic
one-parameter family of smooth curves in R3 can only have isolated parameter
values for which the corresponding curve has one inflection or one biflattening.
When the parameter of the family passes through one of such isolated values,
the number of flattenings of the corresponding curve changes by 2.

Let 7 be an immersed curve in R3 and T be its tangent indicatrix. At the

simple Darboux vertices of 7 the order of contact of T with its osculating
circle is 4 (at the ordinary points it is 3), and the radius of the osculating
circle of T is a local maximum or a local minimum (Lemma 2.3). The points
of spherical inflection of T (the flattenings of 7) are not Darboux vertices
(the order of contact with the osculating circle is 3), but the radius of the

osculating circle has the maximal value : 1. The radius of the osculating
circle of T at a Darboux vertex of 7 can be 1 only at a spherical bi-
inflection of T (a biflattening of 7), thus such a Darboux vertex is not
generic.

A generic Darboux vertex for which the radius of the osculating circle
of the tangent indicatrix has a local maximum (minimum) will be called an
M-D-vertex (m-D-vertex, respectively).

Given a curve, put the following labels to its special points : m to the m-D-
vertices, 331 to the M-D-vertices, $ to the flattenings, 03 to the biflattenings
and 3 to the inflections.
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THEOREM 1. During an inflection perestroika, the curve experiences the

following transition in a neighbourhood of the inflection :

m i—» 3 <—*

THEOREM 2. During a biflattening perestroika, the curve experiences the

following transition in a neighbourhood of the biflattening point :

<—> «.
Remark. Besides the perestroikas of Theorems 1 and 2, there is only

one other perestroika (the double Darboux vertex perestroika) at which the

number of Darboux vertices changes : two Darboux vertices are born or killed.

3.1 Proof of Theorem 2

Let 7f be a generic one-parameter family of curves having a biflattening

perestroika at t 0. Suppose that at the perestroika two flattenings are born.

This means — by Lemma 2.4 — that two spherical inflections of the tangent

indicatrix Tt are born by means of a spherical bi-inflection transition. Thus

before the perestroika the radius of the osculating circle of T, has a local

maximum: an M-D-vertex. At the biflattening moment, this radius will take

the value 1. After the perestroika two close spherical inflections of T; are

born. The radius of the osculating circle of both is 1. So in the small segment

of curve between them there is a point of Tr for which the radius of the

osculating circle has a local minimum, i.e., an m-D-vertex of jt.

3.2 Proof of Theorem 1

Let 71 be a generic one-parameter family of curves having an inflection

perestroika at t 0. Suppose that at the perestroika two flattenings are born.

This means — by Lemma 2.4 — that two spherical inflections of the tangent

indicatrix T, are born by means of a cusp transition (see Figure 2).

So, before the perestroika (t < 0) there is an m-D-vertex mt for which
the radius of the osculating circle of Tt is very small and is going to zero

(at the cusp moment). Thus going along the curve 7| from the point mr,

on each side of it, the radius of the osculating circle of Tr is increasing.

After the perestroika {t > 0) we have two close spherical inflections of Tt.

In the short segment of curve between them there is a point of T, having a

local minimum of the radius of the osculating circle: an m-D-vertex of 7.
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Figure 2

Transition of the tangent indicatrix during an inflection perestroika

On the other side of these spherical inflections the radius of the osculating
circle of T, is decreasing. But before the perestroika (and also at the moment
of perestroika) the radius of the osculating circle was increasing going from
the point mr along the two branches of the curve Tt (locally separated by
rrv). The fact that the perestroika is a local transition implies that near each
of these spherical inflections and outside the small segment bounded by them,
there is also a local minimum of the radius of the osculating circle. Thus
besides the ra-D-vertex located between the two new flattenings of yt (t > 0)
we have two new m-D-vertices located outside the smctll segment of curve
bounded by these flattenings.

4. Global theorems

Let 7 be a smooth closed curve in R3. Write M(y), m(7) and F(y) for
the number of its M-D-vertices, ra-D-vertices and flattenings, respectively.
The number of points at which the Darboux axis or the osculating plane are
stationary satisfies a universal relation:

THEOREM 3. Any generic closed curve 7: S1 -A R3 satisfies

m{7) - M(7) — F(7) 0

There is a version of Theorem 3 for non-closed curves 7 : R -a R3 whose

tangent indicatrix T7 is smooth and periodic (closed) :
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Theorem 3. Let7: R —» R3 be a smooth curve without inflections.
Suppose that the image of its tangent indicatrix T7 : R —S2 C R3 is a
closed smoothly immersed curve Y(which may be covered an infinite number
of times). Let 1ba[a,b)CR beany interval such that Y T7(/*) and
each point of T has exactly one preimage. Then the curve yah -7 R3
satisfies

m(~fab) - M(yab)-F(J 0

Theorem 4.If a generic closed curve has an M-D-vertex then it also has
two different m-D-vertices such that the open segment of the curve bounded
by them and containing that M-D-vertex has no flattening and has no other
Darboux vertex.

Proof. Consider a generic smooth immersion 7: S1 R3 and write F(y)
and 0(7) f°r the number of its flattenings and Darboux vertices, respectively.
In [11] Heil proved a theorem implying that for a generic closed curve (i.e.
without inflections and possibly with simple flattenings and simple Darboux
vertices) 7 we have F(7) + D(7) > 4.

Suppose that 7 has an M-D-vertex and denote it by M. By Heil's theorem,
besides M there are at least three other Darboux vertices and/or flattenings.
The radius of the osculating circle of T decreases when you move along
the curve from M. Thus M must have two neighbouring m-D-vertices.

4.1 Proof of Theorems 3 and 3

First proof. Let yt be a generic family of closed curves of R3. Besides
the perestroikas of generic one-parameter families of curves at which the
number of flattenings changes (the perestroikas of Theorems 1 and 2), there is
other perestroika — called double Darboux vertex perestroika — at which two
Darboux vertices (one m-D-vertex and one M-D-vertex) are born or killed.
At all of them the number m(-ft) - M(7,) - F(yt) does not change. The reader
can verify that m(7) - M(7) - F(y) 0 for a generic example.

Second proof. For a generic curve 7, the local extrema of the radius
of the osculating circle of T must alternate. If T is a smooth closed curve
the number of local minima is equal to the number of local maxima of the
radius of the osculating circle of T. The local minima correspond to the
m-D-vertices of 7. The local maxima correspond to the M-D-vertices or to
the flattenings of 7. Thus m(7) - M(7) - F(7) 0.
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5. The transitions of the spherical indicatrices
DURING AN INFLECTION PERESTROIKA

During an inflection perestroika, the normal N (and -N), binormal

B (and -B) and Darboux D (and -D) indicatrices experience global

changes.

Transition of the binormal indicatrix. In Figure 3 we describe the

perestroika of the family of binormal indicatrices corresponding to a generic

one-parameter family of curves 71 in R3, during an inflection perestroika.

In the same figure, the perestroika of the corresponding family of tangent

indicatrices is described by the small curve on the left hand side of each

sphere. The binormal indicatrix is obtained from the tangent indicatrix by

a translation along the great circles normal to the tangent indicatrix at a

distance of ±tt/2. Note that at the inflection moment, a whole great circle in

the binormal indicatrix corresponds to the point of inflection, i.e. to the cusp

of the tangent indicatrix (see Main Remark in §2.1). The local perestroika of

the space curve 7 involves a global perestroika of ± the binormal indicatrix

which "includes" not only the neighbourhood of the cus p points but also this

whole great circle. In particular, before and after the perestroika the two curves

B and — B have a natural orientation given by the orientation of the original

curve 7. The orientation of each arc of this great circle (not containing the

bifurcation cusp points) changes at the inflection moment.

Figure 3

Perestroika of db the binormal indicatrix during an inflection perestroika

Note that for t < 0 and t > 0, the North and South poles of the sphere

in B? and -Bt, respectively correspond to the point of maximal curvature of

the tangent indicatrix Tf. This means that the image of the point of minimal
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curvature of the curve 7 on the binormal indicatrix (that is, the point which
will become the inflection of 70) is far from the bifurcation cusp points of

Bo and -B0. As is shown in Figure 3, the curves B and -B "exchange" a
component (each one "gives" a half of great circle to the other).

Figure 4

Darboux indicatrix during an inflection perestroika

Transition of the Darboux indicatrix. For all parameter values,
except the moment of inflection perestroika, the Darboux indicatrix has cusps
(1 or 3) corresponding to Darboux vertices of the curve 7: R -7 R3

(Theorem 1). At the moment of perestroika these cusps disappear and the
Darboux indicatrix D (and —D) "becomes smooth" but a new component (a
great circle) is added to D (and also to -D) see Figure 4.

Figure 5

Perestroika of the normal indicatrix during an inflection perestroika

Transition of the normal indicatrix. In Figure 5 we describe the
perestroika of the normal indicatrices of a generic one-parameter family
of curves 7, in R3 during an inflection perestroika. We also describe the
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corresponding perestroika of the tangent indicatrices : it is the small curve on

the left hand side of each sphere. The normal indicatrix N and its antipodal

curve -N, are obtained from the tangent indicatrix by a translation at a

distance ±tt/2 along the great circles tangent to the tangent indicatrix. At

the inflection moment, a whole great circle in the union of the curves N and

-N is associated to the point of inflection (i.e. to the cusp of the tangent

indicatrix). The points of spherical inflection of N or -N at time t correspond

to the Darboux vertices of the curve jt.

6. Special points and perestroikas
FROM THE CONTACT AND SYMPLECTIC VIEW POINTS

The space of trihedrals. The space of orthonormal-oriented bases of
R3 (trihedrals) is isomorphic to the contact 3-dimensional manifold PT*S2 of

co-oriented contact elements on the sphere S2. When a point moves along a

curve 7 in R3, the Frenet trihedral of the curve at that moving point sweeps

a Legendrian curve L G PT* S2. The three natural projec tions LS2 of this

Legendre curve to the unit sphere — defined by the choice of the first, the

second or the third vector of the Frenet trihedral — give the tangent, normal

and binormal indicatrices of 7, respectively.

Figures 2, 3 and 5 correspond to the three natural projections to the sphere

of one and the same family Lt of Legendrian curves in PT* S2 associated to

a family 77 of curves in R3 during an inflection perestroika (see [16] and

"Triality Theorem" in [5]). In this case the Legendrian curve Lt experiences

a perestroika at the inflection moment (see Figure 6). This explains why these

non-standard perestroikas of caustics and wave fronts appear naturally during

an inflection perestroika of a smooth curve.

The Gauss map. We recall from the theory of Lagrangian singularities

(see for instance [2] or [3]) that the Gauss map of a smooth curve in Euclidean

space R3 associates to each oriented line normal to the curve its orienting

unit vector, translated to the origin. This defines a (Lagrangian) map of the

(Lagrangian) cylinder, formed by all the oriented lines normal to the curve,

into the unit sphere S2. We recall that the caustic of a Lagrangian map is

the set of its critical values. The images of all oriented lines normal to the

curve whose orienting unit vector is plus or minus the binormal vector, =bb,

form the caustic of the Gauss map. In other words the caustic of the Gauss



Figure 6

The three natural projections of the Legendrian curve
(of Frenet trihedrals) associated to a space curve

map consists of the binormal indicatrix B and its antipodal curve —B. At the
flattenings of the curve each component of the caustic has a cusp.

Example (4-flattening theorem). Given a closed convex plane curve
7 in R2CR3, the binormal vector is constant. Thus the caustic of the Gauss

map consists of the North and South poles of the unit sphere, which are the
images of b and —b, respectively. Any small enough generic perturbation 7
of 7 in R3 (taking the derivatives into account) has at least 4 flattenings [4].
In terms of Lagrangian singularities the theorem says that the caustic of the
Gauss map associated to 7 (i.e. ± the binormal indicatrix of 7 consists of
two small antipodal curves near the poles each one having at least 4 cusps.
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Remark. Consider a generic one-parameter family 7, of smoothly

immersed curves in R3 having a curve with an inflection for an isolated

value t — 0 of the parameter. The Gauss map associated to each curve of the

family has a caustic. All these caustics form a one-parameter family Bt of

caustics having a non-standard perestroika at t 0 (see Figure 3).

Remark. During the biflattening perestroika of Theorem 3 the Darboux

indicatrix does not change its shape (it has a semi-cubic cusp for all

neighbouring parameter values). During a biflattening perestroika the binormal

indicatrix experiences a typical local perestroika of caustics, see Figure 7.

t<0 t=0 t>0

Figure 7

Darboux and binormal indicatrices during a biflattening perestroika

During a double Darboux vertex perestroika, the Darboux indicatrix

experiences a typical local perestroika of caustics, see Figure 8.

Figure 8

Darboux indicatrix during a double Darboux vertex perestroika

The front of the tangential map of a generic curve 7 in R3 (in RP3) is

a surface in the dual space (R3)v (respect. (RP3)v) consisting of all planes

of R3 (respect, of RP3) tangent to 7. The perestroika of the family of fronts

of a generic one-parameter family of curves in R3 (respect. RP3 having a

curve with an inflection for an isolated parameter value: is described in [14].
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7. Special points and perestroikas on the angle-length strip

Let 7 be a smooth immersed curve in R3, parametrised by the arc length s.
The rectifying plane of the curve at -s is the plane generated by the unit tangent
and binormal vectors of 7 at v As we saw in §2, the normalised Darboux
vector lies in the rectifying plane: d (t/uj)t + (k/cj)b. Hence we can write
r/cu sin $ and k/lu cost?, where $ is the signed angle from b to d,
where the ordered pair (b, t) is a positive basis of the rectifying plane.

The formula D' (KT ~3TK \nt — rb) implies that the derivative of the
Darboux indicatrix also lies in the rectifying plane (proving also Fenchel's
statement 1).

Any generic curve satisfies the condition n > 0. This fact implies that D
lies in the half-plane of the rectifying plane given by the direction of b (see
Figure 9).

Figure 9

The Darboux indicatrix in the rectifying plane

The Darboux indicatrix in fact lies in a semi-circle, and D can be identified
with the angle where $ G [—7r/2,7r/2] (and $ =L7t/2 only at inflections).
We will describe how the Darboux indicatrix of a generic family of curves
evolves. We will schematically represent the curve D as a curve D (ri(s), s)
in the angle-length strip [—7r/2,7t/2] x R.

7r

m-D-vertices 2 M-D-vertices Flattenings

Figure 10

m-D-vertices, M-D-vertices and flattenings viewed in the curve D
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The points of D at which ^ 0 are the Darboux vertices of 7. The

points of D at which 0 are the flattenings of 7. The M-D-vertices of 7

are the critical points of whose convex side is pointing towards the axis

(} 0. The ra-D-vertices of 7 are the critical points of û(s) whose convex

side is pointing against the axis # 0. The flattenings of 7 are the crossings

of D with the axis ê 0, see Figure 10.

The biflattening perestroika of a generic family of curves is represented in

Figure 11.

d 2

A A
$

at \
Figure 11

The biflattening perestroika of a generic family of curves

The inflection perestroika of a generic family of curves is represented in

Figure 12.

7r

T\
_

2

/ L._ * 1

A y,
7r

11
r 13

2

Figure 12

At an inflection perestroika of a generic family of curves a vertical double segment appears

Although the Frenet trihedral is not uniquely defined at an inflection point

(see Main Remark, §2), the rectifying plane has a limit position at that point.

This limit plane is parallel to the great circle which is 'added' to the Darboux

indicatrix during an inflection perestroika (see Figure 4) The presence of this

circle means that every direction in this limit plane defines a Darboux vector at

the inflection point. Thus at the inflection moment a vertical double segment —

corresponding to all angles in [—7r/2, tt/2], counted twice — is added to the

curve D in the angle-length strip. After the moment of pierestroika this double

segment splits and intersects the axis 0 in two points (corresponding to

two new flattenings).
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The evolution of the curve D during a double Darboux vertex perestroika
in a generic family of curves is represented in Figure 13. The flattenings are
not involved in the double Darboux vertex perestroika.

77

^ v ^ N V\
77

" J ^

2

Figure 13

The double Darboux vertex perestroika of a generic family of curves

The other possibility of a biflattening (inflection or double Darboux vertex)
perestroika can be obtained from Figure 11 (12 or 13, respectively) by mirroring
with respect to the horizontal axis.

8. Darboux vertices and geometry of the focal curve

An osculating sphere at a point of a curve in Euclidean space R3 is a

sphere having at least 4-point contact with the curve at that point (the affine
subspaces are considered as spheres of infinite radius). The osculating sphere
is unique at any point of a generic curve.

A vertex of a curve in R3 is a point where the curve has at least 5-point
contact with an osculating sphere at that point.

Let 7: s t-A 7(s) be a generic curve in Euclidean space R3. Write C7(s)
for the centre of the osculating sphere of 7 at s. If s is a flattening of 7
then C7(s) is not defined and we will say that C7(s) is at infinity. A non
generic curve can have an inflection ; in this case the centre of the osculating
sphere is not defined and we say that it is at infinity.

Definition. The curve C7 : s ea C7(x) consisting of the centres of the
osculating spheres of 7 is called the focal curve of 7 (for a more general
study see [17]).

Theorem 5. A curve 7 of R3 and its focal curve C1 have the same
Darboux indicatrix : (D(C7))(j) (D(y))(s). This statement is also valid for
the points where the curve 7 (or C7) has an ordinary cusp. (The definition
of Darboux vector at these points is given in the proof
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We reformulate the definition of an inflection of a curve in R3 in terms

of the tangent indicatrix:

Definition 8.1. An inflection of a curve immersed in R3 is a point where

the first derivative of its tangent indicatrix vanishes (i.e. it is a cusp of the

tangent indicatrix for a generic inflection).

Although the focal curve C7 is not defined when the curve 7 has a

flattening, the tangent indicatrix of C7 is always well defined. We will say

that C7 has an inflection or a flattening if its tangent indicatrix has a cusp

or a spherical inflection, respectively.

THEOREM 6. (a) The Darboux vertices of 7 correspond to the Darboux

vertices of C7.

(b) The vertices of 7 correspond to cusps of C1.

(c) The flattenings of 7 correspond to the inflections of C7. The inflections

of C1 are at infinity.

(d) The inflections of 7 correspond to the flattenings of C7. The flattenings

of C1 are at infinity.
So the finite part of the focal curve has neither inflections nor flattenings.

Remark. Item (d) holds only under Fenchel's convention, (b), in §2.1.

Corollary 1. The focal curve of a generic closed curve in Euclidean

space R3 has an even number of cusps, has no flattening and has (as a stable

property) an even number of isolated inflections (at infinity!).

The following theorem is a by-product of the proof of Theorem 5 :

Focal Curve Theorem. Let 7 : R R3 be a smoothly immersed curve

without vertices and with curvature k and torsion r both nowhere zero. Then

the focal curve C1 has curvature k and torsion f both nowhere zero and

- - - 1.
n k

A helix of R3 is a curve for which the function t/k is constant. So, in

[10], [13] and [12] it is stated that at the points of local extremum of the

function t/k the curve behaves like a helix.
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COROLLARY 2. The focal curve of a helix with curvature and torsion
nowhere zero is also a helix with curvature and torsion nowhere zero.

8.1 Proof of Theorems 5 and 6

Let 7 be a curve in Euclidean space R3, parametrised by arc length .v.

Let R be the radius of curvature of 7, i.e. R= \/n. Write C7 for the focal
curve of 7. Derivation with respect to s is denoted by a prime: d/ds '.

LEMMA. Write ß R! jr. The derivative of the focal curve with respect
to s is C'^s) ((Rr + ß')b)(s).

Proof A direct and easy calculation shows that C7(s) (7+Rn-f/?b)(,s).
So, derivation with respect to s gives :

C^(s) (t + R(-kt + rb) + R'n + ß(-m) + ß'bX» ((Rr + ß')b)(s)

Proofof Theorem 5. At an ordinary cusp of a curve, the tangent line is well
defined and we define the unit tangent vector to the curve in a neighbourhood
of the cusp as a continuous vector field of unit tangent vectors on the curve.
Of course, the orientation of the curve is different from the orientation of the
unit tangent vector along one of the branches of the curve. The tangent plane
is also well defined at an ordinary cusp and the binormal unit vector is defined
as the unit vector normal to this tangent plane, which is locally on the same
side of the plane as the curve. The unit tangent vector and the binormal unit
vector define automatically the unit normal vector. So in the neighbourhood of
the cusp we have a unit trihedral which differs from the Frenet trihedral, on
one of the branches of the curve, only in the sign of some of the unit vectors.
So at the points in which the Frenet trihedral is well defined, the Darboux
axis coincides with the instantaneous axis of rotation of the unit trihedral just
defined. By the preceding lemma we can say that b is the unit tangent vector
t of the focal curve C7. By the Frenet equations we have b' —rn. So
the unit normal and binormal vectors of C7 are, up to the sign, n and t,
respectively. This implies that 7 and C7 have the same Darboux axis.

Proof of Theorem 6 a). Direct corollary of Proposition 1.

Proof of Theorem 6 b). The preceding lemma implies that C^(s) 0 if
and only if (Rr + ß')(s) 0. The points of 7 for which (Rr + ßr)(s) 0 are
its vertices (see [7]). In fact a spherical curve identically satisfies the equation
(Rr + ß')(s) 0. Thus the vertices of 7 correspond to the cusps of C7.
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Proof of Theorem 6 c). The statement follows from Definition 8.1 applied

to C1, Lemma 2.4 and Fenchel's statement (2).

Proof of Theorem 6 d). The statement follows from Definition 8.1 applied

to 7, Fenchel's statement (2) and Lemma 2.4.

PART II. CURVES IN EUCLIDEAN rc-SPACE

9. Darboux vertices and twistings

PROPOSITION D-F. The Darboux vertices of a smooth immersed curve in

R3 coincide with the points at which its tangent indicatrix has a flattening.

Proof. First, the tangent indicatrix of T is N. By Lemma 2.4, a

flattening of T corresponds to a spherical inflection of N. Next, by Fenchel's

statement (4), the Darboux vertices of 7 correspond to the spherical inflections

of N. Thus Darboux vertices of 7 and flattenings of T coincide.

From Proposition D-F we see that there are at least two direct generalisations

of Darboux vertices for higher dimensional spaces :

Definition of a Darboux vertex. When the Frenet frame of a curve

in Euclidean space is translated to the origin, it determines a rigid motion.

If the space is of odd dimension then this rigid motion has an instantaneous

axis of rotation, called the Darboux axis. A point of a curve for which its

Darboux axis is stationary is called a Darboux vertex of that curve.

Definition of a twisting. The tangent indicatrix of a curve in Euclidean

space R'\ n > 2, is the curve T on S"-1 C Rn described by the unit tangent

vector of that curve, translated to the origin. A point of a curve 7 in R",

n > 2, is called a twisting ([13]) if the tangent indicatrix of 7 considered as

a spatial curve has a flattening at the corresponding point.

PROPOSITION D-T. For every smooth curve Darboux vertices and twistings

coincide only in Euclidean 3 -space.

Proof. Let 7 be a curve in Rn. A vector belongs to the Darboux

axis of 7 (when it exists, i.e. n odd) if and only if it is orthogonal to

the hyperplane spanned by the derivatives of the unit vectors of the Frenet
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?z-hedral : t7, n7,, n7 A vector is orthogonal to the osculating hyperplane
of the tangent indicatrix of 7 at a point if and only if it is orthogonal to the

hyperplane spanned by the derivatives of t at that point: t7,..., t("_1). These

hyperplanes coincide for every value of the curve's parameter only for n 3.
That is, the Darboux axis of 7 is orthogonal to the osculating hyparplane of
the tangent indicatrix of 7 (for every value of the curve's parameter) only if
n — 3. Thus, for any curve 7 the stationariness of its Darboux axis implies
and is implied by the stationariness of the osculating hyperplane of the tangent
indricatrix only if n 3.

For odd n > 3, the Darboux axis of a generic curve 7 can be orthogonal
to the osculating hyperplane of the tangent indicatrix only at isolated points :

the flattenings of 7 (see first remark of § 10 or the proof of Proposition 3 in
§11.1). At these points, the Darboux axis of 7 and the osculating hyperplane
of the tangent indicatrix are both non stationary. Of course, the coincidence of
Darboux vertices and twistings for odd n > 3 is possible for very degenerate
(i.e. non generic) curves.

Necessary and sufficient conditions for the stationariness of the Darboux
axis of a curve in R2Â:+1, k > 1, are given in Theorem 7 below.

In §10 and §11 we present theorems on Darboux vertices and twistings,
respectively.

10. Darboux vertices of curves in Euclidean space Rn

THEOREM 7. Let 7 be a smoothly immersed curve in R2Â:+1, k > 1.
Write fti, tt2, • • •, «2k for ds curvatures. The curve 7 has a Darboux vertex
at s — so if and only if (n2/nx f 0, (K4/K3)' =0, (n2k/^2k-\Y 0

at s so.

Corollary. A generic curve in R2*+', k> 2, has no Darboux vertex.

Suppose that n 2k -f 1. Write t(s), 111(5),..., ^(s) for the unit vectors
of the Frenet rc-hedral of 7 at 5.

PROPOSITION 1. The Darboux axis of 7 at time s is determined by the
kernel of the Frenet matrix M(s), given with respect to the basis t, nj, n2k
(see M(s) in equation (*) below). See also Lemma 2.1 in subsection 2.3.

Proof. This is a direct consequence of the Frenet equations.
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The curvatures «1,..., n2k-\ of a generic curve in R-'+ are positive

everywhere. The last curvature K2k can vanish at isolated points (the flattenings).

Write

<30 K2^4 ' ' ' K>2k y a\

_ «2M

K\ ^3
üq (32 d\

Kj2 ^4

~dj— 1

l^2k— 1

ak (3^-1 «1^3 • • • K2A-1 •

K2j
" Klk

We define the Darboux vector of a curve in R2*+1 by

d (3ot + (3IÜ2 + * • • T ClkDi2k •

Proposition 2. 77ze Darboux vector d a0t + <3in2 + • • • + akn2k lies

in the kernel of M{s) and, if the curve is generic, it generates the kernel

of M(s).

Proof Direct verification shows that the following equality holds :

(o\

(*) M(s) d

0 K1 0 •• 0 0

-«1 0 K2 ' ' 0 0

0 -K2 0

0 0

\

V

0 K2k

-K2k 0 J

/ \(30
X

0

a i

0

0

\ak

0

0

0

0

V0/

In fact the inner product of d with the odd row vectors of M yields zero

since the odd row vectors of M are linear combinations of the unit vectors

nj for odd j. Denote t no. The 2/h row vector of M has the form

^2/Tln2j — tt2y+2ll2/+2 j 0, tk — 1
f

so its inner product with d is

/%+1
ajU2j+1 — aj+1 K2/+2 — ajK2]+1

^2/+2
ajtv2j+2 0

Remark. At the flattenings of 7, the Darboux axis contains the 2k -normal

vector n2A- This follows from the definition of the functions (3b,... ,ak.
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10.1 Proof of Theorem 7

The Darboux vector d aot+^iiUT* • generates the Darboux axis
of 7. The derivative of the vector d, with respect to arc length s, d' dd/ds,
can be decomposed into two components, one of them orthogonal to d and
the other parallel to d. The line generated by d is stationary at s s0 if and

only if the component of d'O0) orthogonal to d(s0) is zero, i.e. if and only
if d'Oo) is proportional to d(>o). So we must first calculate d7.

Lemma 10.1. d7 a'01 + a\ii2 + • • • + a'k\i2k.

Proof. Evidently, d7 (a&t+flin2 + - • .+^n2yO+(tf0t7+tf1iT> + - • '+akn,2k).
Write X for the second term on the right hand side of this equation. First, to
prove that X 0, we will use the Frenet equations :

X aoOqni) + ai(-«2m + «3n3) H

+ aji —Kylly-l + K2j-+in2j-+i) + h O-k t\>2k Ü2A: — 1 •

Next, for j — 1.....Ä, we will use the definition of the functions aij :

af-Kylly 1 + «2/1 1 n2/-+ j -(«2,- /K2j)cij- ] K-2jU2j- \ + <Z/«2/+l n2j+\

— ~aj-1 K2j~ 1 n2j-1 + ajK'2j+1 n2/-+1

Using these equalities, the sum of two neighbouring terms of X,

tfy(-^2/n2y—l + Kty+ili2/+0 + <2f+1 (~/^2(/'+ !)n2(/'+1 )-1 + ^2(/+l)+ln2(/'+l)+l)

becomes

1 ^2/— 1 n2y— 1 + Oy^n+1%+1) + C ajH2j-\-1 »2/+1 + 1 ^2(/+ 1 n2(/+1 )+1 •

This implies that X 0. Thus d7 a^t + a[n2 H h a'kn2k.

Proof of Theorem 7. By Lemma 10.1, d7 is parallel to d at a point if
and only if

4
Oq (2 \ ük

at that point. These equalities hold simultaneously if and only if the following
equalities hold simultaneously:

K'\
_

K'l k3 _ K2k-1 _ f2k

K\ «2 «3 «4
'

12.2k-[ «2k

that is, if and only if
(^2/^1/ 0, (^4//^3)7~05 (w^-iy o.
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Remark. For generic curves in Euclidean space R2^ i:he Frenet 2&-hedral

has no axis of rotation and the Frenet matrix degenerates only at flattenings.

The degeneracy or non-degeneracy of the Frenet matrix depends only on the

odd curvatures : the determinant of the Frent matrix is equal to n2n2 • • • k_{ •

This means that even when all even curvatures vanish the Frenet matrix

will be non-degenerate if the odd curvatures don't vanish

11. Twistings of closed curves in Euclidean n -space

A curve a : R -A Rn, n > 2, whose tangent vector forms a constant angle

with a given direction v in R" is called a helix. Thus all points of a helix

are twistings.

Any generic closed curve immersed in R3 has at least two twistings.

At a twisting of a curve, there exist helices having at least (n + 2)-point
contact with it, whereas at an ordinary point of a generic curve a helix can

have at most (n-\- I)-point contact with it (see [13]).

The first statement follows from the fact that a smoothly immersed closed

curve in the two-dimensional sphere has at least 2 flattenings.

Problem 1 (C. Romero-Fuster, 1999). Does the fact that any generic

smoothly immersed closed curve in R3 has at least two twistings generalise

to closed curves in Rn

Problem 2. Find conditions on a closed curve in R" that guarantee that

the number of twistings is not less than some lower bound depending on n.

To answer these problems we present the following global theorems :

Theorem 8. The number of twistings of a closed curve in R2^+1 is at
least equal to the number of its flattenings.

Theorem 9. There exist closed curves in R2k, k> 2, without twistings.
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DEFINITION. A closed curve in Rn is called a Barner curve if for every
(n — 1)-tuple of (not necessarily geometrically different) points of the curve
there exists a hyperplane through these points that does not intersect the curve
elsewhere.

Theorem 10. Any Barner curve in R2^+1 has at least 2& + 2 twistings.

Proof. Theorem 10 follows from Theorem 8 and from the fact ([6]) that

any Barner curve in R2Â:+1 has at least 2k + 2 flattenings.

A hypersphere of S" of maximal radius will be called an equator. In
relation with Problem 2, it was proved in [13] that:

A generic closed curve in R2/:+1 whose tangent indicatrix meets each

equator of S2k in at most 2k points (counting their multiplicities) has at least
2k + 2 twistings.

Remark. This statement is true, but unfortunately it is empty: there is
no closed curve satisfying the required conditions.

Proof of the remark. First, any closed curve of S2^ which meet each

equator in at most 2k points (counting their multiplicities) must lie in an

open hemisphere of S2k, [15]. Next, the tangent indicatrix of a closed curve
in R2*+l is a closed curve on the sphere S2k intersecting each equator at
least twice [10] :

1° Given an equator E of S2/\ there is a unique hyperplane HE C R2/:+1

containing it : E HE CI S2^.

2° The orthogonal projection of 7 on the line orthogonal to HE has at
least two critical points.

3° The tangent vector of 7 at each one of these critical points is contained
in a hyperplane parallel to HE.

Thus at these points the tangent indicatrix of 7 intersects the equator E.

Proof of Theorem 9. We indicate some closed curves without twistings :

Proposition. The closed curve 7: S1 -» R2k, given by

7($) (cos sin cos 2$, sin 2$,,cos kfî, sin M),

has no twisting.
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Proof. The tangent indicatrix of 7 is the spherical curve given by

T($) —7— (— sin d. cos 1?, —2 sin 2i?, 2 cos 2i?,..., —k sin & cos kd),
v/M

where M 1 + 4 H b &2. The Wronski determinant cf the curve T never

vanishes (in fact it is constant). So T has no flattening and thus 7 has no

twisting.

Another proof All curvatures of T are constant and T does not lie in a

hyperplane.

Remark. Any small enough perturbation of 7 (taking the derivatives into

account) has no twisting.

11.1 Proof of Theorem 8

Throughout this section, a closed curve in W always means a smooth

immersion 7: S1 —» Rw. An immersion is good if the derivatives of 7 of
orders (1,1) are linearly independent at any point. A generic immersion

is good.

Theorem 8 follows from the following proposition :

PROPOSITION 3. Between two consecutive flattenings of a good curve in

the Euclidean space R2^+1 there is at least one twisting.

To prove Proposition 3 we will need Proposition 4 below. We recall some

definitions related to the geometry of spherical curves :

An osculating (n— 1) -sphere at a point of a spherical curve 7CS"C Rn+{

is an (n - 1 )-dimensional sphere having at least (n + 1) -point contact with
the curve at that point. Each point of a generic spherical curve has a unique

osculating hypersphere.

A vertex of a spherical curve in Sn C Rn+1 is a point at which the curve

has at least (n + 2)-point contact with an osculating hypersphere at that point.

If the curve has (n + 2/)-point contact with its osculating hypersphere, / > 1,

the point is a vertex of odd multiplicity 2/ — 1.

An osculating equator at a point of a spherical curve in S" C R"+l is

an equator having at least n -point contact with the curve at that point. Each

point of a generic spherical curve has a unique osculating equator.
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A spherical inflection of a spherical curve in Sn C R"+1 is a point at
which the curve has at least (n l)-point contact with an osculating equator
at that point. If the curve has exactly n + 1 )-point contact with its osculating
equator then the point is called a simple spherical inflection.

Proposition 4. Between two consecutive spherical inflections of a spherical

curve 7 C S2Â: C R2^+1 there is an odd number of vertices of odd
multiplicity (hence at least one).

Lemma [15]. The vertices of a spherical curve 7 C Sn C R"+1 are the
flattenings of 7 regarded as a spatial curve.

Proof of Proposition 3. Let T be the tangent indicatrix of 7 C R2/:+1.
The hyperplane through the origin containing the 2-codimensional osculating
space of T is parallel to the osculating hyperplane of 7 : it contains T
and the subspace of codimension 2 generated by the derivatives of T. The
intersection of this hyperplane with S2* is the osculating equator of T.
If the osculating hyperplane of 7 is stationary then the osculating equator
of T is stationary. So the flattenings of 7 correspond to the spherical
inflections of its tangent indicatrix T. Proposition 4 and the preceding lemma
imply that between two consecutive flattenings of 7 there is at least one
twisting.

Thus, it remains only to prove Proposition 4.

LEMMA 1. At a spherical inflection of a spherical curve 7 c S" C Rw+1

the osculating hypersphere coincides with the osculating equator.

Proof. At a spherical inflection the osculating equator is a hyper-
sphere having at least (n 4- l)-point contact with the curve, so it is
osculating.

Lemma 2. At the simple spherical inflections of a spherical curve
7 C S2Â: C R2*+1 the curve passes from one side of the osculating equator to
the other.

Proof. At the simple spherical inflections the order of contact of the curve
with its osculating equator is odd.
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Lemma 3. If a spherical curve 7 C S2k has even order of contact with

its osculating hypersphere at a given point then this point is a vertex of odd

multiplicity of the curve.

Proof A spherical curve 7 C S2k has + 1 )-point contact with its

osculating hypersphere at a non-vertex. Thus if the order of contact is 2k + 21

the point is a vertex of odd multiplicity.

11.1.1 Proof of Proposition 4

Let 7: R -A S2* C R2/:+1 be a spherical curve in the 2k-dimensional

sphere of radius R. Suppose that 7(70) and 7(7) are two consecutive simple

spherical inflections of 7, with 7 < 7, and there is no spherical inflection in

the open interval (7,7). By Lemma 3, we need only to show that there is

a point t G (7,7), such that the curve 7 has even order of contact with its

osculating hypersphere at 7(7).

For each t G (7), 7) the radius of the osculating hypersphere of 7

at 7(t) is smaller than R. So each osculating hypersphere separates S2*

into two discs of different size. We distinguish these two discs : the

smaller one will be called Int and the larger one will be called Ext.

This permits one to co-orient continuously the osculating hyperspheres

of 7 for t G (7,7): we choose as co-orienting vector the unit vector

tangent to S2k, orthogonal to the osculating hypersphere and pointing

from Ext(0 to Int(f)» By continuity we extend this co-orientation

to the osculating hyperspheres of 7 at the spherical inflections 7(7)
and 7(7).

At each point 7(0, with t G (7,7), the osculating equator separates

S2^ into two hemispheres. The hemisphere containing the disc lnt(0 will be

denoted by INT(t) and the other will be denoted by EXT(0- This permits

one to co-orient continuously the osculating equators of 7, for t G (7,7) •

we choose as co-orienting vector the unit vector tangent to S2ky orthogonal

to the osculating equator and pointing from EXT(0 to INT(t). By continuity

we extend this co-orientation to the osculating equators of 7 at the spherical

inflections 7(7) and 7(7)-

Lemma 4. The co-orienting vectors of the osculating hyperspheres and

of the osculating equators of the spherical curve 7 coincide for t G [7,7].

Proof They coincide by construction.
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LEMMA 5. At y(to) the curve 7 traverses its osculating equator from
EXT(/o) to INT(ro). At 7(7) the curve 7 traverses its osculating equator
from INT(7) to EXTfa).

Proof By Lemma 2, the spherical curve 7 traverses its osculating equator
at the simple spherical inflections 7(/b) and 7O1).

If a point of a smooth spherical curve 7 c S2k is not a spherical inflection
then the order of contact of the curve with its osculating equator is even and
equal to 2k. Thus at each point 7(t), with t G (to, h), the order of contact of 7
with its osculating equator is even. So at each point 7(0, with t G Ob, h), the
curve lies locally in one of the two hemispheres determined by the osculating
equator.

The definition of INT(0 implies that for each t G (to,t\) the osculating
hypersphere of 7 at 7(t) is contained in the hemisphere INTO) • At each point
70), with / G (fa, h)g the curve must lie locally in the same hemisphere as its
osculating hypersphere. Thus at each point 7(0, with t G ObOi), the curve 7
must lie locally in INTO). This implies that at 7Ob) the curve 7 traverses
its osculating equator from EXT(/b) to INTOo) and that at 7O1) the curve 7
traverses its osculating equator from INTOi) to EXT(q).

LEMMA 6. At y(to) the curve 7 traverses its osculating hypersphere from
ExtOo) to IntOo). Ar 7O1) the curve 7 traverses its osculating hypersphere
from IntOi) to Ext(q).

Proof This is a corollary of Lemma 1, Lemma 4 and Lemma 5.

By Lemma 6, at t to -he (and at t t\ - e) v with e > 0 small enough,
the curve traverses the osculating hypersphere from Ext(r) to Int(r) (from
Int(r) to Ext(r), respectively). This implies that there exists an odd number
of points and at least one point 7O), with t G (to, h), at which the curve
7 does not traverse its osculating hypersphere. Thus the order of contact of
the curve with its osculating hypersphere at 7Çt) is even or infinite. Thus, by
Lemma 3, the point 7(t) is a vertex of odd order of the spherical curve 7.
Proposition 4 is proved for the case of two consecutive simple spherical
inflections.

If, accidentally, the spherical inflections y(to) and 7(7) are not simple
then we can make a small enough perturbation T (taking derivatives into
account) of the curve 7 in order to decompose the spherical inflections into
a finite number of simple ones. The simple spherical inflections of T will
be grouped inside two small neighbourhoods UQ and U\ of y(to) and y(fo),
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respectively. Denote by to the largest value of t for which the curve I has

a simple spherical inflection in Uq Denote by t\ the smallest value of t for

which the curve T has a simple spherical inflection in U\. We proved that

between T(?0) and F(?i) there is at least one vertex of T of odd order. We

can join T to 7 by a homotopy 7* such that at each 5 G [0,1) the curve

7s has only simple spherical inflections. Thus each js will have at least one

vertex of odd order. This implies that 7 will also have at least one vertex of
odd order. This proves Proposition 4. a
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